Planimetric instability of channels with variable width

2002 ◽  
Vol 457 ◽  
pp. 79-109 ◽  
Author(s):  
R. REPETTO ◽  
M. TUBINO ◽  
C. PAOLA

We study the steady three-dimensional flow field and bed topography in a channel with sinusoidally varying width, under the assumptions of small-amplitude width variations and sufficiently wide channel to neglect nonlinear effects and sidewall effects. The aim of the work is to investigate the role of width variations in producing channel bifurcation in braided rivers. We infer incipient bifurcation in cases where the growth of a central bar leads to planimetric instability of the channel, i.e. when the given infinitesimal width perturbation is enhanced. Results of the three-dimensional model suggest that the equilibrium bottom profile mainly consists of a purely longitudinal component, uniformly distributed over the cross-section, which induces deposition at the wide section and scour at the constriction, and of a transverse component in the form of a central bar (wide sections) and scour (constrictions), with longitudinal wavelength equal to that of width variations. A comparison between the results of the three-dimensional model and those obtained by means of a two-dimensional depth-averaged approach shows that the transverse component is mainly related to three-dimensional effects. Theoretical findings display a satisfactory agreement with results of flume experiments. Transverse variations are responsible for the planimetric instability of the channel; we find that in the range of values of Shields stress typical of braided rivers, the incipient bifurcation is enhanced as the width ratio of the channel increases.

Author(s):  
Seong-Min Kim ◽  
Moon C. Won ◽  
B. Frank McCullough

Continuously reinforced concrete pavement (CRCP) performance depends primarily on early-age cracks that result from changes in temperature and drying shrinkage. Presented is the behavior of the CRCP due to the temperature change obtained by using a three-dimensional finite element model. The nonlinear effects of the bond-slip between concrete and steel and between concrete and base have been studied. Modeling for the curling effect and for the viscoelastic material characteristics also has been considered. The results from the two-dimensional and three-dimensional models have been compared to verify the possibility of using a two-dimensional model. From this study, it was found that crack width and concrete stress are dependent on the transverse steel arrangement near the edge (longitudinal joint), but they are almost independent in the interior of the slab. The tensile stress occurring at the top of the edge on the transverse steel location can be higher than that occurring at the top of the slab center. This represents the possibility of forming a transverse crack from the edge on the transverse steel location. The twodimensional model with the plane stress element gives results very close to those of the three-dimensional model, except near the edge.


2021 ◽  
Vol 7 (20) ◽  
pp. eabe7798
Author(s):  
Christian Helanow ◽  
Neal R. Iverson ◽  
Jacob B. Woodard ◽  
Lucas K. Zoet

Ice-sheet responses to climate warming and associated sea-level rise depend sensitively on the form of the slip law that relates drag at the beds of glaciers to their slip velocity and basal water pressure. Process-based models of glacier slip over idealized, hard (rigid) beds with water-filled cavities yield slip laws in which drag decreases with increasing slip velocity or water pressure (rate-weakening drag). We present results of a process-based, three-dimensional model of glacier slip applied to measured bed topographies. We find that consideration of actual glacier beds eliminates or makes insignificant rate-weakening drag, thereby uniting process-based models of slip with some ice-sheet model parameterizations. Computed slip laws have the same form as those indicated by experiments with ice dragged over deformable till, the other common bed condition. Thus, these results may point to a universal slip law that would simplify and improve estimations of glacier discharges to the oceans.


Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Akio Morita ◽  
Toshikazu Kimura ◽  
Shigeo Sora ◽  
Kengo Nishimura ◽  
Hisayuki Sugiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document