A computational parameter study for the three-dimensional shock–bubble interaction

2007 ◽  
Vol 594 ◽  
pp. 85-124 ◽  
Author(s):  
JOHN H. J. NIEDERHAUS ◽  
J. A. GREENOUGH ◽  
J. G. OAKLEY ◽  
D. RANJAN ◽  
M. H. ANDERSON ◽  
...  

The morphology and time-dependent integral properties of the multifluid compressible flow resulting from the shock–bubble interaction in a gas environment are investigated using a series of three-dimensional multifluid-Eulerian simulations. The bubble consists of a spherical gas volume of radius 2.54 cm (128 grid points), which is accelerated by a planar shock wave. Fourteen scenarios are considered: four gas pairings, including Atwood numbers −0.8 < A < 0.7, and shock strengths 1.1 < M ≤ 5.0. The data are queried at closely spaced time intervals to obtain the time-dependent volumetric compression, mean bubble fluid velocity, circulation and extent of mixing in the shocked-bubble flow. Scaling arguments based on various properties computed from one-dimensional gasdynamics are found to collapse the trends in these quantities successfully for fixed A. However, complex changes in the shock-wave refraction pattern introduce effects that do not scale across differing gas pairings, and for some scenarios with A > 0.2, three-dimensional (non-axisymmetric) effects become particularly significant in the total enstrophy at late times. A new model for the total velocity circulation is proposed, also based on properties derived from one-dimensional gasdynamics, which compares favourably with circulation data obtained from calculations, relative to existing models. The action of nonlinear-acoustic effects and primary and secondary vorticity production is depicted in sequenced visualizations of the density and vorticity fields, which indicate the significance of both secondary vorticity generation and turbulent effects, particularly for M > 2 and A > 0.2. Movies are available with the online version of the paper.

2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Yuri Daniel van Nieuwkerk ◽  
Jörg Schmiedmayer ◽  
Fabian Essler

We consider the non-equilibrium dynamics of a weakly interacting Bose gas tightly confined to a highly elongated double well potential. We use a self-consistent time-dependent Hartree--Fock approximation in combination with a projection of the full three-dimensional theory to several coupled one-dimensional channels. This allows us to model the time-dependent splitting and phase imprinting of a gas initially confined to a single quasi one-dimensional potential well and obtain a microscopic description of the ensuing damped Josephson oscillations.


1980 ◽  
Vol 102 (1) ◽  
pp. 115-120 ◽  
Author(s):  
H. T. Ceylan ◽  
G. E. Myers

An economical method for obtaining long-time solutions to one, two, or three-dimensional heat-conduction transients with time-dependent forcing functions is presented. The conduction problem is spatially discretized by finite differences or by finite elements to obtain a system of first-order ordinary differential equations. The time-dependent input functions are each approximated by continuous, piecewise-linear functions each having the same uniform time interval. A set of response coefficients is generated by which a long-time solution can be carried out with a considerably lower cost than for conventional methods. A one-dimensional illustrative example is included.


2014 ◽  
Vol 23 (06) ◽  
pp. 1460006 ◽  
Author(s):  
V. S. Olkhovsky

The formal mathematical analogy between time-dependent quantum equation for the nonrelativistic particles and time-dependent equation for the propagation of electromagnetic waves had been studied in [A. I. Akhiezer and V. B. Berestezki, Quantum Electrodynamics (FM, Moscow, 1959) [in Russian] and S. Schweber, An Introduction to Relativistic Quantum Field Theory, Chap. 5.3 (Row, Peterson & Co, Ill, 1961)]. Here, we deal with the time-dependent Schrödinger equation for nonrelativistic particles and with time-dependent Helmholtz equation for electromagnetic waves. Then, using this similarity, the tunneling and multiple internal reflections in one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) particle and photon tunneling are studied. Finally, some conclusions and future perspectives for further investigations are presented.


2003 ◽  
Vol 02 (04) ◽  
pp. 537-546 ◽  
Author(s):  
DANIEL NEUHAUSER ◽  
ROI BAER

We develop a formalism for efficient iterative solutions of scattering problems involving the Maxwell equations. The methods, borrowed from recent advancements in chemical reaction dynamics, represent the scattering wavefunctions on two grids; one used for the initial wave and is one-dimensional; the other is a small three-dimensional grid padded with absorbing-potentials on which the scattered function is represented. The formalism is automatically suitable for scattering studies of transmission, reflection and scattering components of a wave. The simulations can be done with time-dependent wavepackets or direct iterative solution for the Green's function, but the results are rigorous time-independent (frequency-dependent) scattering amplitudes. Model time-dependent simulations involving up to a 100×100×100 grid for the inner wavefunction were numerically done on a simple PC.


2016 ◽  
Vol 723 ◽  
pp. 789-794 ◽  
Author(s):  
Michał Lidner ◽  
Zbigniew Szcześniak

A method of numerical analysis of the phenomenon of the air shock wave propagation is presented. The paper describes an explicit own solution. It uses Finite Volume Method (FVM). It also takes into account energy losses due to a heat transfer. For validation, the results of numerical analysis were compared with the literature reports. Both one-dimensional (an explosion in the pipe) and three-dimensional (explosion within the compartment) flow of a shock wave were analysed. Values of impulse, pressure, and its duration were studied. Finally, an overall good convergence of numerical results with experiments was achieved. Also the most important parameters were well reflected.


2021 ◽  
Vol 22 (16) ◽  
pp. 8514
Author(s):  
Je-Hoi Mun ◽  
Hirofumi Sakai ◽  
Dong-Eon Kim

Time evolution operators of a strongly ionizing medium are calculated by a time-dependent unitary transformation (TDUT) method. The TDUT method has been employed in a quantum mechanical system composed of discrete states. This method is especially helpful for solving molecular rotational dynamics in quasi-adiabatic regimes because the strict unitary nature of the propagation operator allows us to set the temporal step size to large; a tight limitation on the temporal step size (δt<<1) can be circumvented by the strict unitary nature. On the other hand, in a strongly ionizing system where the Hamiltonian is not Hermitian, the same approach cannot be directly applied because it is demanding to define a set of field-dressed eigenstates. In this study, the TDUT method was applied to the ionizing regime using the Kramers-Henneberger frame, in which the strong-field-dressed discrete eigenstates are given by the field-free discrete eigenstates in a moving frame. Although the present work verifies the method for a one-dimensional atom as a prototype, the method can be applied to three-dimensional atoms, and molecules exposed to strong laser fields.


Sign in / Sign up

Export Citation Format

Share Document