A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue

2008 ◽  
Vol 601 ◽  
pp. 189-198 ◽  
Author(s):  
ASLAN R. KASIMOV

We propose a theory of a steady circular hydraulic jump based on the shallow-water model obtained from the depth-averaged Navier–Stokes equations. The flow structure both upstream and downstream of the jump is determined by considering the flow over a plate of finite radius. The radius of the jump is found using the far-field conditions together with the jump conditions that include the effects of surface tension. We show that a steady circular hydraulic jump does not exist if the surface tension is above a certain critical value. The solution of the problem provides a basis for the hydrodynamic stability analysis of the hydraulic jump. An analogy between the hydraulic jump and a detonation wave is pointed out.

2021 ◽  
Vol 26 (2) ◽  
pp. 54-76
Author(s):  
Diego Bareiro ◽  
Enrique O’Durnin ◽  
Laura Oporto ◽  
Christian Schaerer

In this paper, we analyze the distribution of a non-reactive contaminant in Ypacarai Lake. We propose a shallow-water model that considers wind-induced currents, inflow and outflow conditions in the tributaries, and bottom effects due to the lakebed. The hydrodynamic is based on the depth-averaged Navier-Stokes equations considering wind stresses as force terms which are functions of the wind velocity. Bed (bottom) stress is based on Manning's equation, the lakebed characteristics, and wind velocities. The contaminant transportation is modeled by a 2D convection-diffusion equation taking into consideration water level. Comparisons between the simulation of the model, analytical solutions, and laboratory results confirm that the model captures the complex dynamic phenomenology of the lake. In the simulations, one can see the regions with the highest risk of accumulation of contaminants. It is observed the effect of each term and how it can be used them to mitigate the impact of the pollutants.    


1976 ◽  
Vol 1 (15) ◽  
pp. 63 ◽  
Author(s):  
Charles L. Mader

The wave motion resulting from cavities in the ocean surface was investigated using both the long wave, shallow water model and the incompressible Navier-Stokes equations. The fluid flow resulting from the calculated collapse of the cavities is significantly different for the two models. The experimentally observed flow resulting from explosively formed cavities is in better agreement with the flow calculated using the incompressible Navier-Stokes model. The resulting wave motions decay rapidly to deep water waves. Large cavities located under the surface of the ocean will be more likely to result in Tsunami waves than cavities on the surface. This is contrary to what has been suggested by the upper critical depth phenomenon.


1974 ◽  
Vol 96 (4) ◽  
pp. 394-400 ◽  
Author(s):  
V. A. Marple ◽  
B. Y. H. Liu ◽  
K. T. Whitby

The flow field in an inertial impactor was studied experimentally with a water model by means of a flow visualization technique. The influence of such parameters as Reynolds number and jet-to-plate distance on the flow field was determined. The Navier-Stokes equations describing the laminar flow field in the impactor were solved numerically by means of a finite difference relaxation method. The theoretical results were found to be in good agreement with the empirical observations made with the water model.


1989 ◽  
Vol 111 (3) ◽  
pp. 333-340 ◽  
Author(s):  
J. F. Louis ◽  
A. Salhi

The turbulent flow between two rotating co-axial disks is driven by frictional forces. The prediction of the velocity field can be expected to be very sensitive to the turbulence model used to describe the viscosity close to the walls. Numerical solutions of the Navier–Stokes equations, using a k–ε turbulence model derived from Lam and Bremhorst, are presented and compared with experimental results obtained in two different configurations: a rotating cavity and the outflow between a rotating and stationary disk. The comparison shows good overall agreement with the experimental data and substantial improvements over the results of other analyses using the k–ε models. Based on this validation, the model is applied to the flow between counterrotating disks and it gives the dependence of the radial variation of the tangential wall shear stress on Rossby number.


1971 ◽  
Vol 47 (2) ◽  
pp. 405-413 ◽  
Author(s):  
Joseph J. Dudis ◽  
Stephen H. Davis

The critical value RE of the Reynolds number R is predicted by the application of the energy theory. When R < RE, the Ekman layer is the unique steady solution of the Navier-Stokes equations and the same boundary conditions, and is, further, stable in a slightly weaker sense than asymptotically stable in the mean. The critical value RE is determined by numerically integrating the relevant Euler-Lagrange equations. An analytic lower bound to RE is obtained. Comparisons are made between RE and RL, the critical value of R according to linear theory, in order to demark the region of parameter space, RE < R < RL, in which subcritical instabilities are allowable.


Sign in / Sign up

Export Citation Format

Share Document