Turbulent Flow Velocity Between Rotating Co-Axial Disks of Finite Radius

1989 ◽  
Vol 111 (3) ◽  
pp. 333-340 ◽  
Author(s):  
J. F. Louis ◽  
A. Salhi

The turbulent flow between two rotating co-axial disks is driven by frictional forces. The prediction of the velocity field can be expected to be very sensitive to the turbulence model used to describe the viscosity close to the walls. Numerical solutions of the Navier–Stokes equations, using a k–ε turbulence model derived from Lam and Bremhorst, are presented and compared with experimental results obtained in two different configurations: a rotating cavity and the outflow between a rotating and stationary disk. The comparison shows good overall agreement with the experimental data and substantial improvements over the results of other analyses using the k–ε models. Based on this validation, the model is applied to the flow between counterrotating disks and it gives the dependence of the radial variation of the tangential wall shear stress on Rossby number.

1990 ◽  
Author(s):  
B. L. Lapworth ◽  
J. W. Chew

Numerical solutions of the Reynolds-averaged Navier-Stokes equations have been used to model the influence of cobs and a bolt cover on the flow and heat transfer in a rotating cavity with an imposed radial outflow of air. Axisymmetric turbulent flow is assumed using a mixing length turbulence model. Calculations for the non-plane discs are compared with plane disc calculations and also with the available experimental data. The calculated flow structures show good agreement with the experimentally observed trends. For the cobbed and plane discs, Nusselt numbers are calculated for a combination of flow rates and rotational speeds; these show some discrepancies with the experiments, although the calculations exhibit the more consistent trend. Further calculations indicate that differences in thermal boundary conditions have a greater influence on Nusselt number than differences in disc geometry. The influence of the bolt cover on the heat transfer has also been modelled, although comparative measurements are not available.


2017 ◽  
Vol 28 (06) ◽  
pp. 1750079 ◽  
Author(s):  
F. Rodrigues Santos ◽  
G. da Silva Costa ◽  
A. T. da Cunha Lima ◽  
M. P. de Almeida ◽  
I. C. da Cunha Lima

This paper aims to detect memory loss of the symmetry of blockades in ducts and how far the information on the asymmetry of the obstacles travels in the turbulent flow from computational simulations with OpenFOAM. From a practical point of view, it seeks alternatives to detect the formation of obstructions in pipelines. The numerical solutions of the Navier–Stokes equations were obtained through the solver PisoFOAM of the OpenFOAM library, using the large Eddy simulation (LES) for the turbulent model. Obstructions were placed near the duct inlet and, keeping the blockade ratio fixed, five combinations for the obstacles sizes were adopted. The results show that the information about the symmetry is preserved for a larger distance near the ducts wall than in mid-channel. For an inlet velocity of 5[Formula: see text]m/s near the walls the memory is kept up to distance 40 times the duct width, while in mid-channel this distance is reduced almost by half. The maximum distance in which the symmetry breaking memory is preserved shows sensitivity to Reynolds number variations in regions near the duct walls, while in the mid channel that variations do not cause relevant effects to the velocity distribution.


1992 ◽  
Vol 114 (1) ◽  
pp. 256-263 ◽  
Author(s):  
B. L. Lapworth ◽  
J. W. Chew

Numerical solutions of the Reynolds-averaged Navier–Stokes equations have been used to model the influence of cobs and a bolt cover on the flow and heat transfer in a rotating cavity with an imposed radial outflow of air. Axisymmetric turbulent flow is assumed using a mixing length turbulence model. Calculations for the non-plane disks are compared with plane disk calculations and also with the available experimental data. The calculated flow structures show good agreement with the experimentally observed trends. For the cobbed and plane disks, Nusselt numbers are calculated for a combination of flow rates and rotational speeds; these show some discrepancies with the experiments, although the calculations exhibit the more consistent trend. Further calculations indicate that differences in thermal boundary conditions have a greater influence on Nusselt number than differences in disk geometry. The influence of the bolt cover on the heat transfer has also been modeled, although comparative measurements are not available.


1989 ◽  
Vol 209 ◽  
pp. 285-308 ◽  
Author(s):  
R. J. Bodonyi ◽  
W. J. C. Welch ◽  
P. W. Duck ◽  
M. Tadjfar

A numerical study of the generation of Tollmien-Schlichting (T–S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite–difference and spectral methods. The nonlinear steady flow is of the viscous–inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier–Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T–S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T–S waves.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.


2018 ◽  
Vol 28 (9) ◽  
pp. 2189-2207 ◽  
Author(s):  
Erman Ulker ◽  
Sıla Ovgu Korkut ◽  
Mehmet Sorgun

Purpose The purpose of this paper is to solve Navier–Stokes equations including the effects of temperature and inner pipe rotation for fully developed turbulent flow in eccentric annuli by using finite difference scheme with fixing non-linear terms. Design/methodology/approach A mathematical model is proposed for fully developed turbulent flow including the effects of temperature and inner pipe rotation in eccentric annuli. Obtained equation is solved numerically via central difference approximation. In this process, the non-linear term is frozen. In so doing, the non-linear equation can be considered as a linear one. Findings The convergence analysis is studied before using the method to the proposed momentum equation. It reflects that the method approaches to the exact solution of the equation. The numerical solution of the mathematical model shows that pressure gradient can be predicted with a good accuracy when it is compared with experimental data collected from experiments conducted at Izmir Katip Celebi University Flow Loop. Originality/value The originality of this work is that Navier–Stokes equations including temperature and inner pipe rotation effects for fully developed turbulent flow in eccentric annuli are solved numerically by a finite difference method with frozen non-linear terms.


2019 ◽  
Vol 224 ◽  
pp. 02003
Author(s):  
Andrey Shobukhov

We study a one-dimensional model of the dilute aqueous solution of KCl in the electric field. Our model is based on a set of Nernst-Planck-Poisson equations and includes the incompressible fluid velocity as a parameter. We demonstrate instability of the linear electric potential variation for the uniform ion distribution and compare analytical results with numerical solutions. The developed model successfully describes the stability loss of the steady state solution and demonstrates the emerging of spatially non-uniform distribution of the electric potential. However, this model should be generalized by accounting for the convective movement via the addition of the Navier-Stokes equations in order to substantially extend its application field.


Sign in / Sign up

Export Citation Format

Share Document