Strongly nonlinear Langmuir circulation and Rayleigh–Bénard convection

2008 ◽  
Vol 614 ◽  
pp. 39-65 ◽  
Author(s):  
G. P. CHINI

Most rational asymptotic studies of non-rotating Rayleigh–Bénard convection and its cousins have been restricted to the linear or weakly nonlinear regime. An important exception occurs for large Rayleigh-number thermal convection at effectively infinite Prandtl number, i.e. fast but very viscous convection. In this scenario, the temperature field exhibits a layer-like structure surrounding an isothermal core and, crucially, the momentum equation linearizes. These features have been exploited by several authors to obtain semi-analytical nonlinear solutions. AtO(1) Prandtl number, the fluid dynamics in the vortex core is dominated by nonlinear inertial rather than linear viscous effects, substantially altering the vortex structure. Here, it is shown that a combination of matched asymptotic analysis and global conservation constraints can be used to obtain a semi-analytic yet strongly nonlinear description of two related flows: (i) Rayleigh–Bénard convection between constant heat-flux boundaries at unit Prandtl number, and (ii) Langmuir circulation (LC), a wind and wave-driven convective flow commonly observed in natural water bodies. A simple analytical prediction is given for the roll-vortex amplitude, which is shown to be independent of the horizontal wavenumber of the convection pattern. In marked contrast to weakly nonlinear convection cells, the fully nonlinear asymptotic solutions exhibit flow features relevant to turbulent convection including the complete vertical redistribution of the basic-state temperature (or, for LC, downwind velocity) field. Comparisons with well-resolved pseudospectral numerical simulations of the full two-dimensional governing equations confirm the accuracy of the asymptotic results.

2015 ◽  
Vol 773 ◽  
pp. 395-417 ◽  
Author(s):  
K. Petschel ◽  
S. Stellmach ◽  
M. Wilczek ◽  
J. Lülff ◽  
U. Hansen

The kinetic energy balance in Rayleigh–Bénard convection is investigated by means of direct numerical simulations for the Prandtl number range $0.01\leqslant \mathit{Pr}\leqslant 150$ and for fixed Rayleigh number $\mathit{Ra}=5\times 10^{6}$. The kinetic energy balance is divided into a dissipation, a production and a flux term. We discuss the profiles of all the terms and find that the different contributions to the energy balance can be spatially separated into regions where kinetic energy is produced and where kinetic energy is dissipated. By analysing the Prandtl number dependence of the kinetic energy balance, we show that the height dependence of the mean viscous dissipation is closely related to the flux of kinetic energy. We show that the flux of kinetic energy can be divided into four additive contributions, each representing a different elementary physical process (advection, buoyancy, normal viscous stresses and viscous shear stresses). The behaviour of these individual flux contributions is found to be surprisingly rich and exhibits a pronounced Prandtl number dependence. Different flux contributions dominate the kinetic energy transport at different depths, such that a comprehensive discussion requires a decomposition of the domain into a considerable number of sublayers. On a less detailed level, our results reveal that advective kinetic energy fluxes play a key role in balancing the near-wall dissipation at low Prandtl number, whereas normal viscous stresses are particularly important at high Prandtl number. Finally, our work reveals that classical velocity boundary layers are deeply connected to the kinetic energy transport, but fail to correctly represent regions of enhanced viscous dissipation.


Sign in / Sign up

Export Citation Format

Share Document