scholarly journals Nonlinear development of subsonic modes on compressible mixing layers: a unified strongly nonlinear critical-layer theory

2008 ◽  
Vol 614 ◽  
pp. 105-144 ◽  
Author(s):  
CLIFFORD A. SPARKS ◽  
XUESONG WU

This paper is concerned with the nonlinear instability of compressible mixing layers in the regime of small to moderate values of Mach numberM, in which subsonic modes play a dominant role. At high Reynolds numbers of practical interest, previous studies have shown that the dominant nonlinear effect controlling the evolution of an instability wave comes from the so-called critical layer. In the incompressible limit (M= 0), the critical-layer dynamics are strongly nonlinear, with the nonlinearity being associated with the logarithmic singularity of the velocity fluctuation (Goldstein & Leib,J. Fluid Mech.vol. 191, 1988, p. 481). In contrast, in the fully compressible regime (M=O(1)), nonlinearity is associated with a simple-pole singularity in the temperature fluctuation and enters in a weakly nonlinear fashion (Goldstein & Leib,J. Fluid Mech.vol. 207, 1989, p. 73). In this paper, we first consider a weakly compressible regime, corresponding to the distinguished scalingM=O(ε1/4), for which the strongly nonlinear structure persists but is affected by compressibility at leading order (where ε ≪ 1 measures the magnitude of the instability mode). A strongly nonlinear system governing the development of the vorticity and temperature perturbation is derived. It is further noted that the strength of the pole singularity is controlled byT′c, the mean temperature gradient at the critical level, and for typical base-flow profilesT′cis small even whenM=O(1). By treatingT′cas an independent parameter ofO(ε1/2), we construct a composite strongly nonlinear theory, from which the weakly nonlinear result forM=O(1) can be derived as an appropriate limiting case. Thus the strongly nonlinear formulation is uniformly valid forO(1) Mach numbers. Numerical solutions show that this theory captures the vortex roll-up process, which remains the most prominent feature of compressible mixing-layer transition. The theory offers an effective tool for investigating the nonlinear instability of mixing layers at high Reynolds numbers.

1996 ◽  
Vol 35 (24) ◽  
pp. 4879 ◽  
Author(s):  
Patrick J. Gardner ◽  
Michael C. Roggemann ◽  
Byron M. Welsh ◽  
Rodney D. Bowersox ◽  
Theodore E. Luke

2012 ◽  
Vol 43 (5) ◽  
pp. 589-613
Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan Vladimirovich Egorov ◽  
Ivan Valeryevich Ezhov ◽  
Sergey Vladimirovich Utyuzhnikov

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1062-1071 ◽  
Author(s):  
A. Seifert ◽  
L. G. Pack

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 825-834
Author(s):  
F. Novak ◽  
T. Sarpkaya

2004 ◽  
Author(s):  
William L. Keith ◽  
Kimberly M. Cipolla ◽  
David R. Hart ◽  
Deborah A. Furey

Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


2011 ◽  
Vol 66 (14) ◽  
pp. 3204-3211 ◽  
Author(s):  
I. Roghair ◽  
Y.M. Lau ◽  
N.G. Deen ◽  
H.M. Slagter ◽  
M.W. Baltussen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document