Flow induced motion of an elastically mounted trapezoid cylinder with different rear edges at high Reynolds numbers

2019 ◽  
Vol 51 (2) ◽  
pp. 025509
Author(s):  
Xinru Mao ◽  
Li Zhang ◽  
Dejiang Hu ◽  
Lin Ding
Author(s):  
Samuel Holmes

Recent work toward predicting spar vortex induced motion (VIM) with computational fluid dynamics (CFD) suggests that such simulations can anticipate many aspects of spar response and thus supplement tow tank experiments and other design methods. However, the results also highlight a number of challenges as well. The spar VIM problem is characterized by very high Reynolds numbers, geometric complexity including the presence of numerous external appendages and the presence of very rough surfaces. In this paper, we first review recent work on spar VIM where CFD was used to simulate tow tank experiments. This work suggests that CFD methods give good results in most cases but also points to some exceptions. In particular, in simulations of small scale vortex induced motion tests of spars, good agreement between analysis and experiments is usually obtained when the flow separates from the spar hull at the strakes. The CFD simulations are sometimes less successful at predicted VIM when flow separation occurs at the spar hull. We then examine our own recent practice in simulating tow tank experiments with CFD with the objective of finding possible modeling deficiencies. The focus is on the resolution of the large eddies in the wake which most influence the fluctuating loads on the spar, but we are also concerned with the use of wall functions to model the boundary layer. All of the calculations use detached eddy simulation (DES). In order to test the method, we make use of wind tunnel experiments at on a fixed truncated cylinder without strakes. The wind tunnel experiments are performed at Reynolds numbers (Re) that are about the same as those used in scale model spar VIM experiments. Wake particle image velocimetry (PIV) and other data from wind tunnel experiments published in the open literature are used for comparison. The comparisons are used to examine requirements for grid resolution in the wake. Finally, it is suggested that specific wind tunnel experiments might be used to gather needed data on the effects of rough walls and appendages at very high Reynolds numbers.


2012 ◽  
Vol 43 (5) ◽  
pp. 589-613
Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan Vladimirovich Egorov ◽  
Ivan Valeryevich Ezhov ◽  
Sergey Vladimirovich Utyuzhnikov

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1062-1071 ◽  
Author(s):  
A. Seifert ◽  
L. G. Pack

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 825-834
Author(s):  
F. Novak ◽  
T. Sarpkaya

2004 ◽  
Author(s):  
William L. Keith ◽  
Kimberly M. Cipolla ◽  
David R. Hart ◽  
Deborah A. Furey

Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


2011 ◽  
Vol 66 (14) ◽  
pp. 3204-3211 ◽  
Author(s):  
I. Roghair ◽  
Y.M. Lau ◽  
N.G. Deen ◽  
H.M. Slagter ◽  
M.W. Baltussen ◽  
...  

Author(s):  
Heinz-Adolf Schreiber ◽  
Wolfgang Steinert ◽  
Bernhard Küsters

An experimental and analytical study has been performed on the effect of Reynolds number and free-stream turbulence on boundary layer transition location on the suction surface of a controlled diffusion airfoil (CDA). The experiments were conducted in a rectilinear cascade facility at Reynolds numbers between 0.7 and 3.0×106 and turbulence intensities from about 0.7 to 4%. An oil streak technique and liquid crystal coatings were used to visualize the boundary layer state. For small turbulence levels and all Reynolds numbers tested the accelerated front portion of the blade is laminar and transition occurs within a laminar separation bubble shortly after the maximum velocity near 35–40% of chord. For high turbulence levels (Tu > 3%) and high Reynolds numbers transition propagates upstream into the accelerated front portion of the CDA blade. For those conditions, the sensitivity to surface roughness increases considerably and at Tu = 4% bypass transition is observed near 7–10% of chord. Experimental results are compared to theoretical predictions using the transition model which is implemented in the MISES code of Youngren and Drela. Overall the results indicate that early bypass transition at high turbulence levels must alter the profile velocity distribution for compressor blades that are designed and optimized for high Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document