Dye visualization near a three-dimensional stagnation point: application to the vortex breakdown bubble

2009 ◽  
Vol 622 ◽  
pp. 177-194 ◽  
Author(s):  
M. BRØNS ◽  
M. C. THOMPSON ◽  
K. HOURIGAN

An analytical model, based on the Fokker–Planck equation, is constructed of the dye visualization expected near a three-dimensional stagnation point in a swirling fluid flow. The model is found to predict dye traces that oscillate in density and position in the meridional plane in which swirling flows are typically visualized. Predictions based on the model are made for the steady vortex breakdown bubble in a torsionally driven cylinder and compared with computational fluid dynamics predictions and experimental observations. Previous experimental observations using tracer visualization techniques have suggested that even for low-Reynolds-number flows, the steady vortex breakdown bubble in a torsionally driven cylinder is not axisymmetric and has an inflow/outflow asymmetry at its tail. Recent numerical and theoretical studies show that the asymmetry of the vortex breakdown bubble, and consequently its open nature, can be explained by the very small imperfections that are present in any experimental rig. Distinct from this, here it is shown that even for a perfectly axisymmetric flow and breakdown bubble, the combined effect of dye diffusion and the inevitable small errors in the dye injection position lead to the false perception of an open bubble structure with folds near the lower stagnation point. Furthermore, the asymmetries in the predicted flow structures can be remarkably similar to those observed in flow observations and computational predictions with geometric asymmetries of the rig. Thus, when interpreting dye-visualization patterns in steady flow, even if axisymmetric flow can be achieved, it is important to take into account the relative diffusivity of the dye and the accuracy of its injection.

1990 ◽  
Author(s):  
A. Kirschner ◽  
H. Stoff

A cascade design-method is presented which complements the meridional through-flow design procedure of turbomachines. Starting from an axisymmetric flow field and the streamline geometry in the meridional plane this simple method produces a solution for the quasi three-dimensional flow field and the blade-element geometry on corresponding stream surfaces. In addition, it provides intra-blade data on loss and turning required for a consistent design and a convenient means of optimizing blade loading. The purpose of this paper is to describe the theoretical basis of the method and to illustrate its application in the design of transonic compressors.


2001 ◽  
Vol 435 ◽  
pp. 327-350 ◽  
Author(s):  
P. DIMITRAKOPOULOS ◽  
J. J. L. HIGDON

The yield conditions for the displacement of three-dimensional fluid droplets adhering to a plane solid boundary in pressure-driven flows are studied through a series of numerical computations. The study considers low-Reynolds-number flows between two parallel plates and includes interfacial forces with constant surface tension. A comprehensive study is conducted, covering a wide range of viscosity ratio λ, capillary number Ca, advancing and receding contact angles, θA and θR, and dimensionless plate separation H/h (where H is the plate spacing and h is the unperturbed droplet height). This study seeks the optimal shape of the contact line which yields the maximum flow rate (or Ca) for which a droplet can adhere to the surface. The critical shear rates are presented as functions Ca(λ, H/h, θA, Δθ) where Δθ = θA − θR is the contact angle hysteresis. The numerical solutions are based on an efficient, three-dimensional Newton method for the determination of equilibrium free surfaces and an optimization algorithm which is combined with the Newton iteration to solve the nonlinear optimization problem. The critical shear rate is found to be sensitive to viscosity ratio with qualitatively different results for viscous and inviscid droplets. As the viscosity of a droplet increases, the critical flow rate decreases, facilitating the displacement. This is consistent with our previous results for shear flows (Dimitrakopoulos & Higdon 1997, 1998), which represent the limit of infinite plate spacing. As the plate spacing is reduced, the critical flow rate increases until a maximum value is reached. Further reduction in the plate spacing decreases the critical flow rate. The effects of both viscosity ratio and plate separation are much more pronounced for high contact angles. Inviscid droplets (or bubbles) show behaviour dramatically different from that of viscous droplets. For these droplets, a significantly higher flow rate is required for drop displacement, but this critical flow rate decreases monotonically as the distance between the plates decreases. In the Appendix, we clarify the necessary conditions for low-Reynolds-number flows past low viscosity droplets or bubbles.


1994 ◽  
Vol 269 ◽  
pp. 247-264 ◽  
Author(s):  
A. Kribus ◽  
S. Leibovich

Weakly nonlinear descriptions of axisymmetric cnoidal and solitary waves in vortices recently have been shown to have strongly nonlinear counterparts. The linear stability of these strongly nonlinear waves to three-dimensional perturbations is studied, motivated by the problem of vortex breakdown in open flows. The basic axisymmetric flow varies both radially and axially, and the linear stability problem is therefore nonseparable. To regularize the generalization of a critical layer, viscosity is introduced in the perturbation problem. In the absence of the waves, the vortex flows are linearly stable. As the amplitude of a wave constituting the basic flow increases owing to variation in the level of swirl, stability is first lost to non-axisymmetric ‘bending’ modes. This instability occurs when the wave amplitude exceeds a critical value, provided that the Reynolds number is larger enough. The critical wave amplitudes for instability typically are large, but not large enough to create regions of closed streamlines. Examination of the most-amplified eigenvectors shows that the perturbations tend to be concentrated downstream of the maximum streamline displacement in the wave, in a position consistent with the observed three-dimensional perturbations in the interior of a bubble type of vortex breakdown.


Fluids ◽  
2017 ◽  
Vol 2 (4) ◽  
pp. 62 ◽  
Author(s):  
Christopher Strickland ◽  
Laura Miller ◽  
Arvind Santhanakrishnan ◽  
Christina Hamlet ◽  
Nicholas Battista ◽  
...  

1994 ◽  
Vol 31 (3) ◽  
pp. 564-571 ◽  
Author(s):  
Tuncer Cebeci ◽  
Hsun H. Chen ◽  
Beng P. Lee

2004 ◽  
Vol 108 (1090) ◽  
pp. 597-610 ◽  
Author(s):  
I. Gursul

Abstract Separated and vortical flows are dominant over various unmanned air vehicles (UAVs). In this article, issues and challenges of vortical flows for future UAVs are reviewed. These include shear layer instabilities, vortex breakdown and wing stall, vortex interactions, nonslender vortices, multiple vortices, and manoeuvring wing vortices. There are also issues relating to vortical flows in certain flow/structure interactions, as well as in aerodynamics/propulsion interactions. Separated and vortical flows are even more dominant at low Reynolds number flows. The main features of vortical flows, unsteady aerodynamics, and propulsion related vortical flow isssues relevant to mini- and micro air vehicles, are discussed.


2018 ◽  
Vol 840 ◽  
Author(s):  
Toshihiko Hiejima

This study proposes an onset condition of shock-free supersonic vortex breakdown from the axial momentum variation, which applies in the presence or absence of a stagnation point. The condition is derived from a comprehensive approach to vortex breakdown. Supersonic breakdown appeared when the swirl parameter and Mach number were small. Moreover, bubble-type breakdowns with a stagnation point, which occur in subsonic conditions, could not occur under the supersonic condition in the present analysis. The predicted breakdowns under this condition were consistent with the results of the three-dimensional numerical simulations for Mach numbers ranging from 1.5 to 5.0. Supersonic vortex breakdowns were clearly captured by the helicity contours in the numerical results. The threshold of the downstream Mach number required for spiral breakdown with no stagnation point was also theoretically derived and verified in numerical results. These findings provide new insights into vortex breakdown in supersonic flows.


Sign in / Sign up

Export Citation Format

Share Document