viscosity ratio
Recently Published Documents


TOTAL DOCUMENTS

455
(FIVE YEARS 104)

H-INDEX

42
(FIVE YEARS 4)

2022 ◽  
Vol 934 ◽  
Author(s):  
S. Noroozi ◽  
W. Arne ◽  
R.G. Larson ◽  
S.M. Taghavi

The centrifugal spinning method is a recently invented technique to extrude polymer melts/solutions into ultra-fine nanofibres. Here, we present a superior integrated string-based mathematical model, to quantify the nanofibre fabrication performance in the centrifugal spinning process. Our model enables us to analyse the critical flow parameters covering an extensive range, by incorporating the angular momentum equations, the Giesekus viscoelastic constitutive model, the air-to-fibre drag effects and the energy equation into the string model equations. Using the model, we can analyse the dynamic behaviour of polymer melt/solution jets through the dimensionless flow parameters, namely, the Rossby ( $Rb$ ), Reynolds ( $Re$ ), Weissenberg ( $Wi$ ), Weber ( $We$ ), Froude ( $Fr$ ), air Péclet ( $Pe^*$ ) and air Reynolds ( $Re^*$ ) numbers as well as the viscosity ratio ( $\delta _s$ ), corresponding to rotational, inertial, viscous, viscoelastic, surface tension, gravitational, air thermal diffusivity, aerodynamic and viscosity ratio effects. We find that the nonlinear rheology remarkably affects the fibre trajectory, radius and normal stresses. Increasing $Wi$ leads to a thicker fibre, whereas increasing $\delta _s$ shows an opposite trend. In addition, by increasing $Wi$ , the fibre curvature is enhanced, causing the fibre to spiral closer to the rotation centre.


2022 ◽  
pp. 110941
Author(s):  
Martha L. Taboada ◽  
Eva Müller ◽  
Nora Fiedler ◽  
Heike P. Karbstein ◽  
Volker Gaukel

2021 ◽  
Vol 9 (2) ◽  
pp. 9-19
Author(s):  
Mohammed Ghalib Al-Azawy

This article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD). Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model than with the Newtonian flow at the upstream and through the first stenosis.


Author(s):  
Md Mizanur Rahman ◽  
Khalid Hasan ◽  
Wenchang Liu ◽  
Xinming Li

A new zero-equation model (ZEM) is devised with an eddy-viscosity formulation using a stress length variable which the structural ensemble dynamics (SED) theory predicts. The ZEM is distinguished by obvious physical parameters, quantifying the underlying flow domain with a universal multi-layer structure. The SED theory is also utilized to formulate an anisotropic Bradshaw stress-intensity factor, parameterized with an eddy-to-laminar viscosity ratio. Bradshaw’s structure function is employed to evaluate the kinetic energy of turbulence k and turbulent dissipation rate epsilon  . The proposed ZEM is intrinsically plausible, having a dramatic impact on the prediction of wall-bounded turbulence. 


2021 ◽  
Author(s):  
Peter Mora ◽  
Gabriele Morra ◽  
Dave Yuen ◽  
Ruben Juanes

Abstract We present a suite of numerical simulations of two-phase flow through a 2D model of a porous medium using the Rothman-Keller Lattice Boltzmann Method to study the effect of viscous fingering on the recovery factor as a function of viscosity ratio and wetting angle. This suite involves simulations spanning wetting angles from non-wetting to perfectly wetting and viscosity ratios spanning from 0.01 through 100. Each simulation is initialized with a porous model that is fully saturated with a "blue" fluid, and a "red" fluid is then injected from the left. The simulation parameters are set such that the capillary number is 10, well above the threshold for viscous fingering, and with a Reynolds number of 0.2 which is well below the transition to turbulence and small enough such that inertial effects are negligible. Each simulation involves the "red" fluid being injected from the left at a constant rate such in accord with the specified capillary number and Reynolds number until the red fluid breaks through the right side of the model. As expected, the dominant effect is the viscosity ratio, with narrow tendrils (viscous fingering) occurring for small viscosity ratios with M ≪ 1, and an almost linear front occurring for viscosity ratios above unity. The wetting angle is found to have a more subtle and complicated role. For low wetting angles (highly wetting injected fluids), the finger morphology is more rounded whereas for high wetting angles, the fingers become narrow. The effect of wettability on saturation (recovery factor) is more complex than the expected increase in recovery factor as the wetting angle is decreased, with specific wetting angles at certain viscosity ratios that optimize yield. This complex phase space landscape with hills, valleys and ridges suggests the dynamics of flow has a complex relationship with the geometry of the medium and hydrodynamical parameters, and hence recovery factors. This kind of behavior potentially has immense significance to Enhanced Oil Recovery (EOR). For the case of low viscosity ratio, the flow after breakthrough is localized mainly through narrow fingers but these evolve and broaden and the saturation continues to increase albeit at a reduced rate. For this reason, the recovery factor continues to increase after breakthrough and approaches over 90% after 10 times the breakthrough time.


2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Thorben Helmers ◽  
Philip Kemper ◽  
Jorg Thöming ◽  
Ulrich Mießner

AbstractThis work investigates the change of the flow topology of Taylor flow and qualitatively relates it to the excess velocity. Ensemble-averaged 3D2C-$$\upmu$$ μ PIV measurements simultaneously resolve the flow field inside and outside the droplets of a liquid–liquid Taylor flow that moves through a rectangular horizontal microchannel. While maintaining a constant Capillary number Ca = 0.005, the Reynolds number ($$0.52 \le {\text{Re}} \le 2.14$$ 0.52 ≤ Re ≤ 2.14 ), the viscosity ratio ($$0.24 \le \lambda \le 2.67$$ 0.24 ≤ λ ≤ 2.67 ) and surfactant concentrations of sodium dodecyl sulfate (0–3 CMC) are varied. We experimentally identified the product of the Reynolds number Re and the viscosity ratio $$\lambda$$ λ to indicate the momentum transport from the continuous phase (slugs) into the droplets (plugs). The position and size of the droplet’s main vortex core as well as the flow topology in the cross section of this vortex core changed with increased momentum transfer. Further, we found that the relative velocity of the Taylor droplet correlates negatively with the evoked topology change. A correlation is proposed to describe the effect quantitatively. Graphical abstract


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8200
Author(s):  
Tao Ning ◽  
Meng Xi ◽  
Bingtao Hu ◽  
Le Wang ◽  
Chuanqing Huang ◽  
...  

Water flooding technology is an important measure to enhance oil recovery in oilfields. Understanding the pore-scale flow mechanism in the water flooding process is of great significance for the optimization of water flooding development schemes. Viscous action and capillarity are crucial factors in the determination of the oil recovery rate of water flooding. In this paper, a direct numerical simulation (DNS) method based on a Navier–Stokes equation and a volume of fluid (VOF) method is employed to investigate the dynamic behavior of the oil–water flow in the pore structure of a low-permeability sandstone reservoir in depth, and the influencing mechanism of viscous action and capillarity on the oil–water flow is explored. The results show that the inhomogeneity variation of viscous action resulted from the viscosity difference of oil and water, and the complex pore-scale oil–water two-phase flow dynamic behaviors exhibited by capillarity play a decisive role in determining the spatial sweep region and the final oil recovery rate. The larger the viscosity ratio is, the stronger the dynamic inhomogeneity will be as the displacement process proceeds, and the greater the difference in distribution of the volumetric flow rate in different channels, which will lead to the formation of a growing viscous fingering phenomenon, thus lowering the oil recovery rate. Under the same viscosity ratio, the absolute viscosity of the oil and water will also have an essential impact on the oil recovery rate by adjusting the relative importance between viscous action and capillarity. Capillarity is the direct cause of the rapid change of the flow velocity, the flow path diversion, and the formation of residual oil in the pore space. Furthermore, influenced by the wettability of the channel and the pore structure’s characteristics, the pore-scale behaviors of capillary force—including the capillary barrier induced by the abrupt change of pore channel positions, the inhibiting effect of capillary imbibition on the flow of parallel channels, and the blockage effect induced by the newly formed oil–water interface—play a vital role in determining the pore-scale oil–water flow dynamics, and influence the final oil recovery rate of the water flooding.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 438
Author(s):  
Toshio Tagawa ◽  
Kewei Song

Spin-up from rest of a liquid metal having deformable free surface in the presence of a uniform axial magnetic field is numerically studied. Both liquid and gas phases in a vertically mounted cylinder are assumed to be an incompressible, immiscible, Newtonian fluid. Since the viscous dissipation and the Joule heating are neglected, thermal convection due to buoyancy and thermocapillary effects is not taken into account. The effects of Ekman number and Hartmann number were computed with fixing the Froude number of 1.5, the density ratio of 800, and the viscosity ratio of 50. The evolutions of the free surface, three-component velocity field, and electric current density are portrayed using the level-set method and HSMAC method. When a uniform axial magnetic field is imposed, the azimuthal momentum is transferred from the rotating bottom wall to the core region directly through the Hartmann layer. This is the most striking difference from spin-up of the nonmagnetic case.


Sign in / Sign up

Export Citation Format

Share Document