On the normal incidence of linear waves over a plane incline partially covered by a rigid lid

2009 ◽  
Vol 623 ◽  
pp. 209-240 ◽  
Author(s):  
ULF T. EHRENMARK

The effect is examined on infinitesimal standing waves over a plane beach when restricted by the arbitrary placing of a finite rigid (or permeable) lid of length ℓ on the undisturbed surface. A uniformly bounded solution for the potential function is obtained by a Green's function method. The Green's function is derived and manipulated, for subsequent computational expedience, from a previously known solution for the problem of an oscillating line source placed at an arbitrary location in the sector. Applications are made to both the case of plate anchored at the origin and the case of plate anchored some distance at sea (drifted plate problem). In both cases water column potentials and equipotentials are constructed from the numerical solution of a Fredholm equation of the second kind by finite difference discretization. Solutions are further extended to include the logarithmically singular standing wave, combination with which allows the construction of progressing waves. Computation of initially incoming progressing wave envelopes demonstrates the emergence of a partially standing wave pattern shoreward of the plate. There is no difficulty, in principle, to extend the theory to any number of plates, and this is verified by computation for the case of two plates. A new shoreline radiation condition is constructed to allow formulation, in the usual way, of the reflection/transmission problem for the plate, and results are in good qualitative agreement with a similar model on a horizontal plane bed. It is argued that the Green's function constructed here could be used in a number of diverse problems, of this linear nature, where all, or part, of the submerged boundary is that of a plane incline.

Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. S187-S193
Author(s):  
Bjørn Ursin ◽  
Martin Tygel

In an anisotropic medium, a normal-incidence wave is multiply transmitted and reflected down to a reflector where the phase-velocity vector is parallel to the interface normal. The ray code of the upgoing wave is equal to the ray code of the downgoing wave in reverse order. The geometric spreading, KMAH index, and transmission and reflection coefficients of the normal-incidence ray can be expressed in terms of products or sums of the corresponding quantities of the one-way normal and normal-incidence-point (NIP) waves. Here, we show that the amplitude of the ray-theoretic Green’s function for the reflected wave also follows a similar decomposition in terms of the amplitude of the Green’s function of the NIP wave and the normal wave. We use this property to propose three schemes for true-amplitude poststack depth migration in anisotropic media where the image represents an estimate of the zero-offset reflection coefficient. The first is a map migration procedure in which selected primary zero-offset reflections are converted into depth with attached true amplitudes. The second is a ray-based, Kirchhoff-type full migration. The third is a wave equation continuation algorithm to reverse-propagate the recorded wavefield in a half-velocity model with half the elastic constants and double the density. The image is formed by taking the reverse-propagated wavefield at time equal to zero followed by a geometric spreading correction.


1985 ◽  
Vol 46 (C4) ◽  
pp. C4-321-C4-329 ◽  
Author(s):  
E. Molinari ◽  
G. B. Bachelet ◽  
M. Altarelli

2014 ◽  
Vol 17 (N/A) ◽  
pp. 89-145 ◽  
Author(s):  
Sridhar Sadasivam ◽  
Yuhang Che ◽  
Zhen Huang ◽  
Liang Chen ◽  
Satish Kumar ◽  
...  

2018 ◽  
Vol 12 (5-6) ◽  
pp. 72-80
Author(s):  
A. A. Krylov

In the absence of strong motion records at the future construction sites, different theoretical and semi-empirical approaches are used to estimate the initial seismic vibrations of the soil. If there are records of weak earthquakes on the site and the parameters of the fault that generates the calculated earthquake are known, then the empirical Green’s function can be used. Initially, the empirical Green’s function method in the formulation of Irikura was applied for main shock record modelling using its aftershocks under the following conditions: the magnitude of the weak event is only 1–2 units smaller than the magnitude of the main shock; the focus of the weak event is localized in the focal region of a strong event, hearth, and it should be the same for both events. However, short-termed local instrumental seismological investigation, especially on seafloor, results usually with weak microearthquakes recordings. The magnitude of the observed micro-earthquakes is much lower than of the modeling event (more than 2). To test whether the method of the empirical Green’s function can be applied under these conditions, the accelerograms of the main shock of the earthquake in L'Aquila (6.04.09) with a magnitude Mw = 6.3 were modelled. The microearthquake with ML = 3,3 (21.05.2011) and unknown origin mechanism located in mainshock’s epicentral zone was used as the empirical Green’s function. It was concluded that the empirical Green’s function is to be preprocessed. The complex Fourier spectrum smoothing by moving average was suggested. After the smoothing the inverses Fourier transform results with new Green’s function. Thus, not only the amplitude spectrum is smoothed out, but also the phase spectrum. After such preliminary processing, the spectra of the calculated accelerograms and recorded correspond to each other much better. The modelling demonstrate good results within frequency range 0,1–10 Hz, considered usually for engineering seismological studies.


Sign in / Sign up

Export Citation Format

Share Document