map migration
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

2016 ◽  
Vol 4 (4) ◽  
pp. SQ33-SQ40 ◽  
Author(s):  
Jing Li ◽  
Gerard T. Schuster

Near-surface normal faults can sometimes separate two distinct zones of velocity heterogeneity, where the medium on one side of the fault has a faster velocity than on the other side. Therefore, the slope of surface-wave arrivals in a common-shot gather should abruptly change near the surface projection of the fault. We present ray-map imaging method that migrates transmitted surface waves to the fault plane, and therefore it roughly estimates the orientation, depth, and location of the near-surface fault. The main benefits of this method are that it is computationally inexpensive and robust in the presence of noise.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. WA159-WA172 ◽  
Author(s):  
Clement Fleury ◽  
Ivan Vasconcelos

Recent advances in marine seismic acquisition allow for the recording of vector-acoustic ([VA] pressure and particle velocity) seismic data from dual-source configurations, i.e., using monopole as well as dipole sources. VA reverse time migration (RTM) can be custom designed to accurately handle amplitude and directivity information from 4C seismic data. We present a method for multicomponent RTM that is based on an adjoint-state formulation using the full VA wave equations for pressure and corresponding displacement fields. This method takes advantage of the directional finite-frequency information contained in the 4C acoustic fields by using source and receiver weighting operators in the adjoint-state imaging scheme. With this adjoint-state method, the source and receiver radiation properties are tailored by choosing specific weighting operators. Weighting operators were chosen so that source- and receiver-side ghost arrivals are jointly migrated with primary energy. Because the dipole field components (e.g., components of particle displacement or acceleration) are proportional to the spatial gradient components of the pressure field, our method is in fact a formulation for reverse-time map migration that images pressure fields while jointly using the directional information contained in its full 3C gradients. As a result, our reverse time 4C map migration method yields less aperture- and sampling-related artifacts when compared to imaging of the pressure-only or 2C seismic data. In addition, our method sets a framework for full-waveform inversion using dual-source 4C seismic data. We demonstrated our findings with synthetic data, including a subsalt imaging example.


Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. S25-S36 ◽  
Author(s):  
Ernesto V. Oropeza ◽  
George A. McMechan

An efficient Kirchhoff-style prestack depth migration, called “parsimonious” migration, was developed a decade ago for isotropic 2D and 3D media by using measured slownesses to reduce the amount of ray tracing by orders of magnitude. It is conceptually similar to “map” migration, but its implementation has some differences. We have extended this approach to 2D tilted transversely isotropic (TTI) media and illustrated it with synthetic P-wave data. Although the framework of isotropic parsimonious may be retained, the extension to TTI media requires redevelopment of each of the numerical components, calculation of the phase and group velocity for TTI media, development of a new two-point anisotropic ray tracer, and substitution of an initial-angle isotropic shooting ray-trace algorithm for an anisotropic one. The model parameterization consists of Thomsen’s parameters ([Formula: see text], [Formula: see text], [Formula: see text]) and the tilt angle of the symmetry axis of the TI medium. The parsimonious anisotropic migration algorithm is successfully applied to synthetic data from a TTI version of the Marmousi2 model. The quality of the image improves by weighting the impulse response by the calculation of the anisotropic Fresnel radius. The accuracy and speed of this migration makes it useful for anisotropic velocity model building. The elapsed computing time for 101 shots for the Marmousi2 TTI model is 35 s per shot (each with 501 traces) in 32 Opteron cores.


Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. S139-S150 ◽  
Author(s):  
Anton A. Duchkov ◽  
Maarten V. de Hoop

Many processes in seismic data analysis and seismic imaging can be identified with solution operators of evolution equations. These include data downward continuation and velocity continuation. We have addressed the question of whether isochrons defined by imaging operators can be identified with wavefronts of solutions to an evolution equation. Rays associated with this equation then would provide a natural way of implementing prestack map migration. Assuming absence of caustics, we have developed constructive proof of the existence of a Hamiltonian describing propagation of isochrons in the context of common-offset depth migration. In the presence of caustics, one should recast to a sinking-survey migration framework. By manipulating the double-square-root operator, we obtain an evolution equation that describes sinking-survey migration as a propagation in two-way time with surface data being a source function. This formulation can be viewed as an extension of the exploding reflector concept from zero-offset to sinking-survey migration. The corresponding Hamiltonian describes propagation of extended isochrons (fronts with constant two-way time) connected by extended isochron rays. The term extended reflects the fact that two-way time propagation now takes place in high-dimensional space with the following coordinates: subsurface midpoint, subsurface offset, and depth. Extended isochron rays can be used in a natural manner for implementing sinking-survey migration in a map-migration fashion.


2009 ◽  
Author(s):  
Chang Li ◽  
Scott A. Morton ◽  
Marion G. King ◽  
Faqi Liu ◽  
Steve Checkles
Keyword(s):  

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE13-VE23 ◽  
Author(s):  
Frank Adler ◽  
Reda Baina ◽  
Mohamed Amine Soudani ◽  
Pierre Cardon ◽  
Jean-Baptiste Richard

Velocity-model estimation with seismic reflection tomography is a nonlinear inverse problem. We present a new method for solving the nonlinear tomographic inverse problem using 3D prestack-depth-migrated reflections as the input data, i.e., our method requires that prestack depth migration (PSDM) be performed before tomography. The method is applicable to any type of seismic data acquisition that permits seismic imaging with Kirchhoff PSDM. A fundamental concept of the method is that we dissociate the possibly incorrect initial migration velocity model from the tomographic velocity model. We take the initial migration velocity model and the residual moveout in the associated PSDM common-image gathers as the reference data. This allows us to consider the migrated depth of the initial PSDM as the invariant observation for the tomographic inverse problem. We can therefore formulate the inverse problem within the general framework of inverse theory as a nonlinear least-squares data fitting between observed and modeled migrated depth. The modeled migrated depth is calculated by ray tracing in the tomographic model, followed by a finite-offset map migration in the initial migration model. The inverse problem is solved iteratively with a Gauss-Newton algorithm. We applied the method to a North Sea data set to build an anisotropic layer velocity model.


Geophysics ◽  
2007 ◽  
Vol 72 (6) ◽  
pp. S231-S248 ◽  
Author(s):  
Huub Douma ◽  
Maarten V. de Hoop

Curvelets are plausible candidates for simultaneous compression of seismic data, their images, and the imaging operator itself. We show that with curvelets, the leading-order approximation (in angular frequency, horizontal wavenumber, and migrated location) to common-offset (CO) Kirchhoff depth migration becomes a simple transformation of coordinates of curvelets in the data, combined with amplitude scaling. This transformation is calculated using map migration, which employs the local slopes from the curvelet decomposition of the data. Because the data can be compressed using curvelets, the transformation needs to be calculated for relatively few curvelets only. Numerical examples for homogeneous media show that using the leading-order approximation only provides a good approximation to CO migration for moderate propagation times. As the traveltime increases and rays diverge beyond the spatial support of a curvelet; however, the leading-order approximation is no longer accurate enough. This shows the need for correction beyond leading order, even for homogeneous media.


Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. S187-S193
Author(s):  
Bjørn Ursin ◽  
Martin Tygel

In an anisotropic medium, a normal-incidence wave is multiply transmitted and reflected down to a reflector where the phase-velocity vector is parallel to the interface normal. The ray code of the upgoing wave is equal to the ray code of the downgoing wave in reverse order. The geometric spreading, KMAH index, and transmission and reflection coefficients of the normal-incidence ray can be expressed in terms of products or sums of the corresponding quantities of the one-way normal and normal-incidence-point (NIP) waves. Here, we show that the amplitude of the ray-theoretic Green’s function for the reflected wave also follows a similar decomposition in terms of the amplitude of the Green’s function of the NIP wave and the normal wave. We use this property to propose three schemes for true-amplitude poststack depth migration in anisotropic media where the image represents an estimate of the zero-offset reflection coefficient. The first is a map migration procedure in which selected primary zero-offset reflections are converted into depth with attached true amplitudes. The second is a ray-based, Kirchhoff-type full migration. The third is a wave equation continuation algorithm to reverse-propagate the recorded wavefield in a half-velocity model with half the elastic constants and double the density. The image is formed by taking the reverse-propagated wavefield at time equal to zero followed by a geometric spreading correction.


Geophysics ◽  
2004 ◽  
Vol 69 (4) ◽  
pp. 1053-1070 ◽  
Author(s):  
Einar Iversen

The isochron, the name given to a surface of equal two‐way time, has a profound position in seismic imaging. In this paper, I introduce a framework for construction of isochrons for a given velocity model. The basic idea is to let trajectories called isochron rays be associated with iso chrons in an way analogous to the association of conventional rays with wavefronts. In the context of prestack depth migration, an isochron ray based on conventional ray theory represents a simultaneous downward continuation from both source and receiver. The isochron ray is a generalization of the normal ray for poststack map migration. I have organized the process with systems of ordinary differential equations appearing on two levels. The upper level is model‐independent, and the lower level consists of conventional one‐way ray tracing. An advantage of the new method is that interpolation in a ray domain using isochron rays is able to treat triplications (multiarrivals) accurately, as opposed to interpolation in the depth domain based on one‐way traveltime tables. Another nice property is that the Beylkin determinant, an important correction factor in amplitude‐preserving seismic imaging, is closely related to the geometric spreading of isochron rays. For these reasons, the isochron ray has the potential to become a core part of future implementations of prestack depth migration. In addition, isochron rays can be applied in many contexts of forward and inverse seismic modeling, e.g., generation of Fresnel volumes, map migration of prestack traveltime events, and generation of a depth‐domain–based cost function for velocity model updating.


Sign in / Sign up

Export Citation Format

Share Document