Flow-induced degradation of drag-reducing polymer solutions within a high-Reynolds-number turbulent boundary layer

2011 ◽  
Vol 670 ◽  
pp. 337-364 ◽  
Author(s):  
BRIAN R. ELBING ◽  
MICHAEL J. SOLOMON ◽  
MARC PERLIN ◽  
DAVID R. DOWLING ◽  
STEVEN L. CECCIO

Polymer drag reduction, diffusion and degradation in a high-Reynolds-number turbulent boundary layer (TBL) flow were investigated. The TBL developed on a flat plate at free-stream speeds up to 20ms−1. Measurements were acquired up to 10.7m downstream of the leading edge, yielding downstream-distance-based Reynolds numbers up to 220 million. The test model surface was hydraulically smooth or fully rough. Flow diagnostics included local skin friction, near-wall polymer concentration, boundary layer sampling and rheological analysis of polymer solution samples. Skin-friction data revealed that the presence of surface roughness can produce a local increase in drag reduction near the injection location (compared with the flow over a smooth surface) because of enhanced mixing. However, the roughness ultimately led to a significant decrease in drag reduction with increasing speed and downstream distance. At the highest speed tested (20ms−1) no drag reduction was discernible at the first measurement location (0.56m downstream of injection), even at the highest polymer injection flux (10 times the flux of fluid in the near-wall region). Increased polymer degradation rates and polymer mixing were shown to be the contributing factors to the loss of drag reduction. Rheological analysis of liquid drawn from the TBL revealed that flow-induced polymer degradation by chain scission was often substantial. The inferred polymer molecular weight was successfully scaled with the local wall shear rate and residence time in the TBL. This scaling revealed an exponential decay that asymptotes to a finite (steady-state) molecular weight. The importance of the residence time to the scaling indicates that while individual polymer chains are stretched and ruptured on a relatively short time scale (~10−3s), because of the low percentage of individual chains stretched at any instant in time, a relatively long time period (~0.1s) is required to observe changes in the mean molecular weight. This scaling also indicates that most previous TBL studies would have observed minimal influence from degradation due to insufficient residence times.

2006 ◽  
Vol 552 (-1) ◽  
pp. 353 ◽  
Author(s):  
WENDY C. SANDERS ◽  
ERIC S. WINKEL ◽  
DAVID R. DOWLING ◽  
MARC PERLIN ◽  
STEVEN L. CECCIO

2004 ◽  
Author(s):  
Brendan F. Perkins

In order to better understand boundary layer turbulence at high Reynolds number, the fluctuating wall pressure was measured within the turbulent boundary layer that forms over the salt playa of Utah’s west desert. Pressure measurements simultaneously acquired from an array of nine microphones were analyzed and interpreted. The wall pressure intensity was computed and compared with low Reynolds number data. This analysis indicated that the variance in wall pressure increases logarithmically with Reynolds number. Computed autocorrelations provide evidence for a hierarchy of surface pressure producing scales. Space-time correlations are used to compute broadband convection velocities. The convection velocity data indicate an increasing value for larger sensor separations. To the author’s knowledge, the pressure measurements are the highest Reynolds number, well resolved measurements of fluctuating surface pressure to date.


Sign in / Sign up

Export Citation Format

Share Document