rheological analysis
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 125)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
pp. 088532822110527
Author(s):  
Piotr Gadziński ◽  
Tomasz Zbigniew Osmałek ◽  
Anna Froelich ◽  
Oliwia Wilmańska ◽  
Agata Nowak ◽  
...  

Purpose. In the performed study, the rheological and textural parameters of gellan-based hydrogels were investigated and their dependence on three factors was taken into consideration: ( i) The presence of the model drug, ( ii) The presence and type of the ionic crosslinking agent, and ( iii) the composition of the polymer network. The objective was to compare two analytical methods, regarded as complementary, and define to what extent the obtained results correlate with each other. Methods. The hydrogels contained low-acyl gellan gum or its mixtures with hydroxyethyl cellulose or κ-carrageenan. CaCl2 and MgCl2 were used as gelling agents. Mesalazine was used as a model drug. The rheological analysis included oscillatory stress and frequency sweeping. The texture profile analysis was performed to calculate texture parameters. Results. Placebo gels without the addition of gelling agents had the weakest structure. The drug had the strongest ability to increase the stiffness of the polymer network. The weakest structure revealed the placebo samples without the addition of gelling agents. Texture analysis revealed no significant influence of the drug on the strength of the gels, while rheological measurements indicated clear differences. Conclusions. It can be concluded that in the case of some parameters methods correlate, that is, the effect related to gelling ions. However, the rheological analysis seems to be more precise and sensitive to some changes in the mechanical properties of the gels.


Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 27
Author(s):  
Maria Demeter ◽  
Ion Călina ◽  
Anca Scărișoreanu ◽  
Marin Micutz

In the present study, we report on the complex hydrogels formulations based on collagen-poly(vinyl pyrrolidone) (PVP)-poly(ethylene oxide) (PEO) cross-linked by e-beam irradiation in an aqueous polymeric solution, aiming to investigate the influence of different PEO concentrations on the hydrogel properties. The hydrogel networks’ structure and their composition were investigated using equilibrium swelling degree, complex rheological analysis, and FT-IR spectroscopy. Rheological analysis was performed to determine the elastic (G′) and viscous (G″) moduli, the average molecular weight between cross-linking points (Mc), cross-link density (Ve), and the mesh size (ξ). The effect of the PEO concentration on the properties of the hydrogel was investigated as well. Depending on the PEO concentration added in their composition, the hydrogels swelling degree depends on the absorbed dose, being lower at low PEO concentrations. All hydrogel formulations showed higher G′ values (9.8 kPa) compared to G″ values (0.2 kPa), which shows that the hydrogels have a predominantly elastic behavior. They presented stability greater than 72 h in physiological pH buffers and reached equilibrium after 25 h. The Mc parameter is strongly dependent on the PEO concentration and the absorbed dose for all hydrogel compositions. The cross-linking density increased with the absorbed dose.


Author(s):  
Abdul Wahab Hashmi ◽  
◽  
Harlal Singh Mali ◽  
Anoj Meena ◽  
◽  
...  

Abrasive Flow Machining (AFM) is the method of finishing complex surfaces and internal channels with the help of extrusion pressure and abrasive-laden viscoelastic polymer media. This paper is based on developing a new AFM media using a natural waste polymer as a base material. In the article, a natural polymer media viz. rice husk ash-based media has been developed, and subsequently, rheological analysis has been done, and experimentation has been performed on Anton-paar® rheometer to optimize the viscosity of these newly developed AFM media. In this research study, the hollow elliptical shape of ABS (acrylonitrile-butadiene-styrene) material was manufactured using the FDM technique and then finished with a one-way AFM machine. This paper examined the parametric dependencies of AFM process parameters on finishing FDM printed hollow elliptical parts. The improved surface roughness of the FDM printed hollow elliptical parts has been investigated relating to the AFM process parameters. The maximum surface roughness has been achieved by 95.98%.


Author(s):  
Longsheng Chen ◽  
qian Lv ◽  
yao Gong ◽  
Lili Zou

Abstract A novel self-supporting multi-layer magnetorheological elastomer-based (MRE-based) composite with large magnetic field-induced responsiveness has been designed and fabricated. We characterized its morphological properties, evaluated the impact of fabrication conditions on its field-induced responsiveness, investigated attenuation of its field-induced responsiveness under different storage temperatures along with time and analyzed this mechanism from the perspective of rheology. The results showed that the MRE-based composite had homogeneous dispersing of the magnetic fillers and a clear interface between different layers. The field-induced responsiveness of the MRE-based composite could be affected by the fabrication conditions, and it attenuated at different rates when subjected to different storage temperatures along with time; its attenuation period lasted a few days under room temperature while over one month under low temperature (4℃). The rheological analysis results indicated a long-term cross-linking process over the storage period along with the attenuation of field-induced responsiveness, which might lead to increasing elasticity (indicated by the loss factor tan δ) and rigidity (indicated by the storage modulus G') of the MRE-based composite along with the storage period. What's more, emerging feature of Payne effect could be found on MRE-based composite during cyclic shear, which indicated decline of the mechanical properties due to strain-induced inherent friction. On the other hand, the iron fillers in MRE layer could enhance the shear modulus and lead to MR effect (up to 187%) for the whole composite, which benefits to the magnetic field-induced responsiveness, due to the relative strengthen of the MRE layer against the assist layer. This work presents a better understanding on the attenuation of the field-induced responsiveness, which is important for the future application of the MRE-based composite.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7734
Author(s):  
Ângelo D. M. Silva ◽  
Mariana M. Silva ◽  
Hugo Figueiredo ◽  
Isabel Delgado ◽  
Paulo E. Lopes ◽  
...  

Driven by the need to deliver new, lead-free, eco-friendly solder pastes for soldering electronic components to Printed Circuit Boards (PCB), electrically conductive adhesives (ECAs) based on epoxy, carbon nanotubes (CNT), and exfoliated graphite (EG) were designed. The rheology of the adhesives prepared is paramount for the success of the deposition process, which is based on stencil printing. Thus, a rheological analysis of the process was first performed. Then, an experimental protocol was defined to assess the relevant viscoelastic characteristics of the adhesives for stencil printing application. Different composite formulations of epoxy/CNT/EG were produced. Their rheological characteristics were established following the designed protocol and benchmarked with a commercial solder paste. The thermal and electrical properties of the composite formulations were also characterized. As a result, a new, electrically conductive adhesive was delivered with potential to be an eco-friendly alternative to the solder paste currently used in stencil printing of PCB.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4330
Author(s):  
Thorben Sören Haubold ◽  
Laura Puchot ◽  
Antoine Adjaoud ◽  
Pierre Verge ◽  
Katharina Koschek

This work explores the strategy of incorporating a highly substituted reactive flame retardant into a benzoxazine moiety. For this purpose, a DOPO-based flame retardant received a chain extension via reaction with ethylene carbonate. It was then reacted with phloretic acid to obtain a diphenol end-capped molecule, and further reacted with furfurylamine and paraformaldehyde to obtain a benzoxazine monomer via a Mannich-like ring closure reaction. This four-step synthesis yielded a partly bio-based halogen-free flame retardant benzoxazine monomer (DOPO-PA-fa). The successful synthesis was proven via NMR, IR and MS analysis. The polymerization behavior was monitored by DSC and rheological analysis both showing the polymerization starts at 200 °C to yield pDOPO-PA-fa. pDOPO-PA-fa has a significant thermal stability with a residual mass of 30% at 800 °C under ambient atmosphere. Furthermore, it reached a V-0 rating against small flames and an OI of 35%. Blended with other benzoxazines, it significantly improves their thermal stability and fire resistance. It emphasizes its potential as flame retardant agent.


Energy ◽  
2021 ◽  
pp. 122929
Author(s):  
Ramesh Narukulla ◽  
Krishna Raghav Chaturvedi ◽  
Umaprasana Ojha ◽  
Tushar Sharma

2021 ◽  
pp. 599-604
Author(s):  
J.B. Borinelli ◽  
J. Blom ◽  
G. Jacobs ◽  
D. Hernando ◽  
W. Van den Bergh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document