The effect of buoyancy on the boundary layer about a heated horizontal circular cylinder in axial streaming

1970 ◽  
Vol 44 (3) ◽  
pp. 529-543 ◽  
Author(s):  
Karen Plain Switzer

The boundary-layer flow over a semi-infinite horizontal circular cylinder heated to a constant temperature and immersed in a uniform axial free stream is discussed in five situations corresponding to successively greater displacements from the leading edge. In the first three cases the drift velocity due to buoyancy is assumed small compared to the axial velocity component. Close to the leading edge of the cylinder the techniques of Seban & Bond are extended to include the drift velocity; far from the leading edge the asymptotic series methods of Stewartson, of Glauert & Lighthill, and of Eshghy & Hornbeck are employed to obtain a solution for the drift velocity. In the intermediate zone where the series solutions do not apply the appropriate partial differential equations are solved numerically. Still further downstream than the region where the ‘asymptotic’ solutions hold it is assumed that the boundary-layer flow is primarily convective and that the boundary layer is thin compared with the radius of the cylinder. A series solution is obtained which is valid near the lowest generator of the cylinder. Numerical methods are used to advance this solution upwards around the cylinder by solving the full boundary-layer equations step-by-step.

1982 ◽  
Vol 5 (2) ◽  
pp. 377-384 ◽  
Author(s):  
D. B. Ingham ◽  
L. T. Hildyard

The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.


2016 ◽  
Vol 78 (4-4) ◽  
Author(s):  
Muhammad Khairul Anuar Mohamed ◽  
Mohd Zuki Salleh ◽  
Nor Aida Zuraimi Md Noar ◽  
Anuar Ishak

Present study consider the mathematical modeling for mixed convection boundary layer flow and heat transfer on a horizontal circular cylinder with viscous dissipation. The transformed partial differential equations are solved numerically by using an implicit finite-difference scheme known as the Keller-box method. Numerical solutions are obtained for the reduced Nusselt number, the local skin friction coefficient, the velocity and temperature profiles. The features of the flow for various values of the Prandtl number, Eckert number and mixed convection parameter are discussed. The results in this paper is original and important for the researchers working in the area of boundary layer flow and this can be used as reference and also as complement comparison purpose in future


Sign in / Sign up

Export Citation Format

Share Document