drift velocity
Recently Published Documents


TOTAL DOCUMENTS

968
(FIVE YEARS 67)

H-INDEX

51
(FIVE YEARS 3)

Author(s):  
С.А. Богданов ◽  
А.А. Борисов ◽  
С.Н. Карпов ◽  
М.В. Кулиев ◽  
А.Б. Пашковский ◽  
...  

The nonlocal electrons heating in transistor heterostructures based on gallium nitride and arsenide is compared. It is shown that if, in comparison with a pure bulk material, in the case of GaAs double doped pseudomorphic heterostructures, the real space transfer of electrons significantly reduces their drift velocity overshot in the region of a strong field, then for GaN-based heterostructures, the decrease of the drift velocity overshot in the studied cases does not exceed 30%.


2021 ◽  
Vol 71 (11) ◽  
pp. 976-984
Author(s):  
Sang-Heon CHOI ◽  
Jong-Gu CHOI ◽  
Ji-Won HA ◽  
Dain JEON ◽  
Yukyoung CHOI ◽  
...  

Author(s):  
De-Xuan Hui ◽  
Zhanghu Hu ◽  
Wan-Li Shang ◽  
Xianxiu Mei ◽  
You-Nian Wang

2021 ◽  
Vol 17 (9) ◽  
pp. e1009353
Author(s):  
Nimrod Sherf ◽  
Maoz Shamir

Rats and mice use their whiskers to probe the environment. By rhythmically swiping their whiskers back and forth they can detect the existence of an object, locate it, and identify its texture. Localization can be accomplished by inferring the whisker’s position. Rhythmic neurons that track the phase of the whisking cycle encode information about the azimuthal location of the whisker. These neurons are characterized by preferred phases of firing that are narrowly distributed. Consequently, pooling the rhythmic signal from several upstream neurons is expected to result in a much narrower distribution of preferred phases in the downstream population, which however has not been observed empirically. Here, we show how spike timing dependent plasticity (STDP) can provide a solution to this conundrum. We investigated the effect of STDP on the utility of a neural population to transmit rhythmic information downstream using the framework of a modeling study. We found that under a wide range of parameters, STDP facilitated the transfer of rhythmic information despite the fact that all the synaptic weights remained dynamic. As a result, the preferred phase of the downstream neuron was not fixed, but rather drifted in time at a drift velocity that depended on the preferred phase, thus inducing a distribution of preferred phases. We further analyzed how the STDP rule governs the distribution of preferred phases in the downstream population. This link between the STDP rule and the distribution of preferred phases constitutes a natural test for our theory.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. A. Dompreh ◽  
K. W. Adu ◽  
D. Sakyi-Arthur ◽  
N. G. Mensah ◽  
S. Y. Mensah ◽  
...  

AbstractWe perform self-consistent analysis of the Boltzmann transport equation for momentum and energy in the hypersound regime i.e., $$ql \gg 1$$ q l ≫ 1 ($$q$$ q is the acoustic wavenumber and l is the mean free path). We investigate the Landau damping of acoustic phonons ($$LDOAP$$ LDOAP ) in graphene nanoribbons, which leads to acoustoelectric current generation. Under a non-quantized field with drift velocity, we observed an acoustic phonon energy quantization that depends on the energy gap, the width, and the sub-index of the material. An effect similar to Cerenkov emission was observed, where the electron absorbed the confined acoustic phonon energy, causing the generation of acoustoelectric current in the graphene nanoribbon. A qualitative analysis of the dependence of the absorption coefficient and the acoustoelectric current on the phonon frequency is in agreement with experimental reports. We observed a shift in the peaks when the energy gap and the drift velocity were varied. Most importantly, a transparency window appears when the absorption coefficient is zero, making graphene nanoribbons a potential candidate for use as an acoustic wave filter with applications in tunable gate-controlled quantum information devices and phonon spectrometers.


Author(s):  
Jayakanth Loganathan ◽  
Kian-Meng Lim ◽  
Heow Pueh Lee ◽  
Boo Cheong Khoo

In this paper, we present a numerical study of a stratospheric balloon system tethered to a passive device, known as the Stratosail, for station-keeping operation. For scientific applications, stratospheric balloons that operate at altitudes between 15 and 20 km will need to maintain station over a fixed point above the earth for a prescribed period of time. This is a challenging problem due to the limitation of payloads and lack of an energy source. The present study uses computational fluid dynamics (CFD) simulations to analyze the drift velocity of such a balloon-Stratosail system under typical wind conditions in the stratosphere. The Stratosail is attached below the super-pressure helium balloon via a long and thin tether about 10 to 15 km below the balloon, providing a drag force to alter the flight path of the balloon. Its operation depends on the natural differences in the wind speed and wind direction at different altitudes in the atmosphere that act on the balloon and the Stratosail (spaced far apart by 10km to 15 km). In this study, we calculated the drag forces on the balloon and Stratosail for typical wind speeds at various altitudes in the stratosphere. The tether was also modelled as a cable joining the balloon and sail. With this model, the drift velocity of the system was calculated for various altitudes and the angle of attack of the sail.


2021 ◽  
Author(s):  
Xiang Zhang ◽  
Minjun Peng ◽  
Tenglong Cong ◽  
Chuan Lu ◽  
Chenyang Wang

Abstract The interfacial area concentration (IAC) is an important parameter in the calculation of interfacial transfers in two-fluid model, which can affect the accuracy of the boiling simulations. In this paper, an improved IAC model based on drag force and drift velocity is obtained, which can make full use of the experimental data and the models of the drag force and the drift velocity to avoid the shortage of IAC algebraic model in two-phase flow simulations theoretically. The improved model is validated by the DEBORA boiling flow experiment data. The reasonable radial distributions of void fraction, liquid temperature and phase velocity can be obtained, which indicates that the improved IAC model coupled in boiling flow model can be applied in CFD simulation of two-phase boiling flow. The improved model provides a new calculation approach for the IAC in the boiling flow with multi flow regimes.


2021 ◽  
Vol 37 (4) ◽  
Author(s):  
A. A. Slepyshev ◽  

Purpose. The paper is aimed at investigating the momentum vertical transfer by inertia-gravity internal waves on a two-dimensional flow with a vertical shear of velocity, and also at studying the Stokes drift of liquid particles and the mean current effect on it. Methods and Results. Free internal waves in an infinite basin of constant depth are considered in the Boussinesq approximation with the regard for the Earth rotation. Two components of the mean current velocity depend on the vertical coordinate. The equation for the vertical velocity amplitude has complex coefficients; therefore the eigenfunction and the wave frequency are complex. The corresponding boundary value problem is solved numerically by the implicit Adams scheme of the third order of accuracy. The wave frequency at a fixed wavenumber was found by the shooting method. It was determined that the frequency imaginary part was small and could be either negative or positive depending on a wave number and a mode number. Thus, both weak attenuation and weak amplification of an internal wave are possible. The vertical wave momentum fluxes are nonzero and can exceed the corresponding turbulent fluxes. The Stokes drift velocity, transverse to the wave direction, is nonzero and less than the longitudinal velocity. The vertical component of the Stokes drift velocity is also nonzero and four orders of magnitude less than the longitudinal component. The signs of the vertical component of the Stokes drift velocity for the waves with the frequencies 10 and 16 cycle/h are opposite, since the signs of their frequency imaginary parts are different; and the vertical component of the Stokes drift velocity is proportional to the wave frequency imaginary part. Conclusions. The vertical momentum wave flux of inertia-gravity internal waves differs from zero in the presence of the current whose velocity component, transverse to the wave propagation direction, depends on the vertical coordinate. The component of the Stokes drift velocity, transverse to the wave propagation direction, is nonzero and less than the longitudinal one. The vertical component of the Stokes drift velocity is also nonzero and can contribute to formation of the vertical fine structure


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
A. A. Slepyshev ◽  

Purpose. The paper is aimed at investigating the momentum vertical transfer by inertia-gravity internal waves on a two-dimensional flow with a vertical shear of velocity, and also at studying the Stokes drift of liquid particles and the mean current effect on it. Methods and Results. Free internal waves in an infinite basin of constant depth are considered in the Boussinesq approximation with the regard for the Earth rotation. Two components of the mean current velocity depend on the vertical coordinate. The equation for the vertical velocity amplitude has complex coefficients; therefore the eigenfunction and the wave frequency are complex. The corresponding boundary value problem is solved numerically by the implicit Adams scheme of the third order of accuracy. The wave frequency at a fixed wavenumber was found by the shooting method. It was determined that the frequency imaginary part was small and could be either negative or positive depending on a wave number and a mode number. Thus, both weak attenuation and weak amplification of an internal wave are possible. The vertical wave momentum fluxes are nonzero and can exceed the corresponding turbulent fluxes. The Stokes drift velocity, transverse to the wave direction, is nonzero and less than the longitudinal velocity. The vertical component of the Stokes drift velocity is also nonzero and four orders of magnitude less than the longitudinal component. The signs of the vertical component of the Stokes drift velocity for the waves with the frequencies 10 and 16 cph are opposite, since the signs of their frequency imaginary parts are different; and the vertical component of the Stokes drift velocity is proportional to the wave frequency imaginary part. Conclusions. The vertical momentum wave flux of inertia-gravity internal waves differs from zero in the presence of the current whose velocity component, transverse to the wave propagation direction, depends on the vertical coordinate. The component of the Stokes drift velocity, transverse to the wave propagation direction, is nonzero and less than the longitudinal one. The vertical component of the Stokes drift velocity is also nonzero and can contribute to formation of the vertical fine structure.


Radio Science ◽  
2021 ◽  
Author(s):  
Ana L. C. Souza ◽  
Paulo O. Camargo ◽  
Marcio T. A. H. Muella ◽  
Flavia Tardelli‐Coelho

Sign in / Sign up

Export Citation Format

Share Document