Measurements of internal gravity waves in a continuously stratified shear flow

1986 ◽  
Vol 172 (-1) ◽  
pp. 453 ◽  
Author(s):  
C. Gary Koop ◽  
Brian McGee
1988 ◽  
Vol 190 ◽  
pp. 357-374 ◽  
Author(s):  
R. Grimshaw

Resonant interactions between triads of internal gravity waves propagating in a shear flow are considered for the case when the stratification and the background shear flow vary slowly with respect to typical wavelengths. If ωn, kn(n = 1, 2, 3) are the local frequencies and wavenumbers respectively then the resonance conditions are that ω1 + ω2 + ω3 = 0 and k1 + k2 + k3 = 0. If the medium is only weakly inhomogeneous, then there is a strong resonance and to leading order the resonance conditions are satisfied globally. The equations governing the wave amplitudes are then well known, and have been extensively discussed in the literature. However, if the medium is strongly inhomogeneous, then there is a weak resonance and the resonance conditions can only be satisfied locally on certain space-time resonance surfaces. The equations governing the wave amplitudes in this case are derived, and discussed briefly. Then the results are applied to a study of the hierarchy of wave interactions which can occur near a critical level, with the aim of determining to what extent a critical layer can reflect wave energy.


1993 ◽  
Vol 19 (1-4) ◽  
pp. 325-366 ◽  
Author(s):  
C.-L. Lin ◽  
J.H. Ferziger ◽  
J.R. Koseff ◽  
S.G. Monismith

1967 ◽  
Vol 30 (3) ◽  
pp. 439-448 ◽  
Author(s):  
Walter L. Jones

In a rotating system, the vertical transport of angular momentum by internal gravity waves is independent of height, except at critical levels where the Doppler-shifted wave frequency is equal to plus or minus the Coriolis frequency. If slow rotation is ignored in studying the propagation of internal gravity waves through shear flows, the resulting solutions are in error only at levels where the Doppler-shifted and Coriolis frequencies are comparable.


2007 ◽  
Vol 64 (5) ◽  
pp. 1509-1529 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Petros J. Ioannou

Abstract In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong emission of gravity waves in the region exterior to the shear layer. The shear flow not only passively filters and refracts the emitted wave spectrum, but also actively participates in the gravity wave emission in conjunction with the distributed forcing. This interaction leads to enhanced radiated momentum fluxes but more importantly to enhanced gravity wave energy fluxes. This enhanced emission power can be traced to the nonnormal growth of the perturbations in the shear region, that is, to the transfer of the kinetic energy of the mean shear flow to the emitted gravity waves. The emitted wave energy flux increases with shear and can become as large as 30 times greater than the corresponding flux emitted in the absence of a localized shear region. Waves that have horizontal wavelengths larger than the depth of the shear layer radiate easterly momentum away, whereas the shorter waves are trapped in the shear region and deposit their momentum at their critical levels. The observed spectrum, as well as the physical mechanisms influencing the spectrum such as wave interference and Doppler shifting effects, is discussed. While for large Richardson numbers there is equipartition of momentum among a wide range of frequencies, most of the energy is found to be carried by waves having vertical wavelengths in a narrow band around the value of twice the depth of the region. It is shown that the waves that are emitted from the shear region have vertical wavelengths of the size of the shear region.


1994 ◽  
Vol 269 ◽  
pp. 1-22 ◽  
Author(s):  
R. Grimshaw

Resonant interactions between internal gravity waves propagating in a stratified shear flow are considered for the case when the background density and shear flow vary slowly with respect to the waves. In Grimshaw (1988) triad resonances were considered, and interaction equations derived for the case when the resonance conditions are met only on certain space-time surfaces, being resonance sites. Here this analysis is extended to include higher-order resonances, with the aim of studying resonant wave interactions near a critical level. It is shown that a secondary resonant interaction between two incoming waves, in which two harmonic components of one incoming wave interact with a single harmonic component of another incoming wave, produces a reflected wave. This result is shown to agree with the study of Brown & Stewartson (1980, 1982a, b) who obtained this same result by a different approach.


1989 ◽  
Vol 32 (10) ◽  
pp. 898-907
Author(s):  
Yu. I. Troitskaya ◽  
A. L. Fabrikant

Sign in / Sign up

Export Citation Format

Share Document