Intermittent dynamics in simple models of the turbulent wall layer

1991 ◽  
Vol 230 ◽  
pp. 75-95 ◽  
Author(s):  
Gal Berkooz ◽  
Philip Holmes ◽  
J. L. Lumley

We generalize the class of models of the wall layer of Aubry et al. (1988), based on the proper orthogonal decomposition, to permit uncoupled evolution of streamwise and cross-stream disturbances. Since the Reynolds stress is no longer constrained, in the absence of streamwise spatial variations all perturbation velocity components eventually decay to zero. However, their transient behaviour is dominated by ’ghosts’ of the non-trivial fixed points and attracting heteroclinic cycles which are characteristic features of those models based on empirical eigenfunctions whose individual velocity components are fixed. This suggests that the intermittent events observed in Aubry et al. do not arise solely because of the effective closure assumption incorporated in those models, but are rooted deeper in the dynamical phenomenon of the wall region.

Author(s):  
Mahdi Hosseinali ◽  
Stephen Wilkins ◽  
Lhendup Namgyal ◽  
Joseph Hall

In this paper, classic Proper Orthogonal Decomposition (POD) on a polar coordinate and snapshot POD on a Cartesian grid will be applied separately in the near field of a turbulent wall jet. Three-component stereoscopic PIV measurements are performed in the transverse plane of a wall jet formed using a round contoured nozzle with a Reynolds number of 250,000. Eigenfunctions and energy distributions of the two methods are compared. Reconstructions using same number of modes and same content of energy have been compared. The effect of grid resolution on the energy content of the classic method has also been studied.


Author(s):  
Gaetano Maria Di Cicca ◽  
Angelo Iollo ◽  
Pier Giorgio Spazzini ◽  
Gaetano Iuso ◽  
Michele Onorato

Experimental data of a turbulent boundary layer developing over a flat plate, obtained by Digital Particle Image Velocimetry (DPIV) technique, are analyzed making use of proper orthogonal decomposition (POD). Different POD definitions have been used in order to check their ability in educing the various structures dominating the near wall region. Results show a specific sensitivity depending on the POD definition adopted.


2019 ◽  
Vol 864 ◽  
pp. 614-639 ◽  
Author(s):  
Srikanth Derebail Muralidhar ◽  
Bérengère Podvin ◽  
Lionel Mathelin ◽  
Yann Fraigneau

An extension of proper orthogonal decomposition is applied to the wall layer of a turbulent channel flow ($Re_{\unicode[STIX]{x1D70F}}=590$), so that empirical eigenfunctions are defined in both space and time. Due to the statistical symmetries of the flow, the eigenfunctions are associated with individual wavenumbers and frequencies. Self-similarity of the dominant eigenfunctions, consistent with wall-attached structures transferring energy into the core region, is established. The most energetic modes are characterized by a fundamental time scale in the range 200–300 viscous wall units. The full spatio-temporal decomposition provides a natural measure of the convection velocity of structures, with a characteristic value of 12$u_{\unicode[STIX]{x1D70F}}$ in the wall layer. Finally, we show that the energy budget can be split into specific contributions for each mode, which provides a closed-form expression for nonlinear effects.


1996 ◽  
Vol 329 ◽  
pp. 341-371 ◽  
Author(s):  
Henry A. Carlson ◽  
John L. Lumley

Direct simulations of flow in a channel with complex, time-dependent wall geometries facilitate an investigation of smart skin control in a turbulent wall layer (with skin friction drag reduction as the goal). The test bed is a minimal flow unit, containing one pair of coherent structures in the near-wall region: a high- and a low-speed streak. The controlling device consists of an actuator, Gaussian in shape and approximately twelve wall units in height, that emerges from one of the channel walls. Raising the actuator underneath a low-speed streak effects an increase in drag, raising it underneath a high-speed streak effects a reduction – indicating a mechanism for control. In the high-speed region, fast-moving fluid is lifted by the actuator away from the wall, allowing the adjacent low-speed region to expand and thereby lowering the average wall shear stress. Conversely, raising an actuator underneath a low-speed streak allows the adjacent high-speed region to expand, which increases skin drag.


Sign in / Sign up

Export Citation Format

Share Document