Energy Content
Recently Published Documents


TOTAL DOCUMENTS

1595
(FIVE YEARS 460)

H-INDEX

62
(FIVE YEARS 12)

Author(s):  
Aparna Kuna ◽  
K. Lakshmiprasanna ◽  
K. Vijay Kumar ◽  
M. Bhagyamma ◽  
V. Sandhya Rani

Background: Demand for convenience foods that need less preparation time are gaining significant importance among many consumers. Redgram dhal which usually needs more cooking time, was evaluated for formulating and checking the suitability of its use as Quick cooking dhal on storage. Methods: Popular PJTSAU released red gram dhal varieties TDRG - 4, RGT - 1 and WRGE - 122 were developed into quick cooking dhal and evaluated for their nutrient composition, colour and functional characteristics on storage for 6 months. Result: Storage of both raw and QCD for six months period resulted in decrease in total ash, protein, carbohydrates and energy content, with no change in crude fiber content, but an increase in the fat content. Significant darkening of the QCD redgram dhal was observed on storage. There was decrease in solids dispersed and water absorption among all the three cultivars with a progressive increase in the cooking time, without affecting the organoleptic properties of the dhal.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jaya Shankar Tumuluru ◽  
Bahman Ghiasi ◽  
Nick R. Soelberg ◽  
Shahab Sokhansanj

Torrefaction, a thermal pretreatment process, is gaining attention as it improves the physical properties and chemical composition of biomass for recycling. During torrefaction, biomass is heated slowly in an inert or oxygen-deficit environment to a maximum temperature of 300°C. The torrefaction process creates a solid uniform product with lower moisture and higher energy content than the raw biomass. During torrefaction, moisture and some volatile organic compounds volatilize from the biomass. Depending on stoichiometry and other conditions, non-condensable gas species, including CO and CO2, are formed. The specific objectives of this research are to: 1) understand the impact of torrefaction on product quality in terms of the physical properties, chemical composition, and storage behavior of the biomass; 2) discuss the various reactors used for biomass torrefaction; and 3) develop a model for designing a moving bed torrefier, considering fundamental heat and mass transfer calculations. Torrefaction improves the physical properties, chemical composition, and energy and storage properties of biomass. Torrefaction of biomass at 300°C increases the energy content by about 30% as compared to the raw biomass. For example, when torrefied, the calorific value of the biomass increases from about 18–19 MJ/kg to about 20–24 MJ/kg. The torrefied material has a moisture content of about 1–3% wet basis (w.b.). The loss of the hydroxyl group during torrefaction makes the biomass hydrophobic. The brittle nature of the torrefied biomass makes it easier to grind. The devolatilization and carbonization reactions change the proximate and ultimate composition. The carbon content increases, whereas the hydrogen, oxygen, and nitrogen content of the biomass decreases. Despite its superior properties, the commercialization of torrefaction technology is slow due to challenges associated with reactor design and final product quality. The different types of reactors that are typically used for biomass torrefaction are the fixed bed, rotary drum, microwave, fluidized bed, and horizontal and vertical moving bed. The moving bed reactor has gained popularity among the different torrefaction reactor designs as it is easy to operate and scale. In addition, it helps produce a uniform torrefied product. In this paper, different moving bed torrefaction and gas recycle concepts are conceptualized to assess the features, advantages, and disadvantages of various design and operating concepts. These designs include example concepts for: 1) vertical and horizontal torrefaction reactors; 2) recycle of all or a portion of the torrefier off-gas; 3) counter and co-flowing gas and biomass in the torrefier; 4) controls for the system temperatures, pressures, flow rates, and gas compositions; and 5) the ability to sample the biomass feed, torrefied product, and gas streams for analysis as needed to investigate the thermal decomposition, physical behavior, and operational performance of the torrefaction system. The article also briefly describes the solid feed system, gas supply and recycle system, solid product management, torrefier gas monitoring, control system, and fugitive dust emissions control. The model presented in this paper includes a set of equations for basic calculations to configure the torrefaction reactor dimensions, such as diameter and height of the moving bed torrefier for different capacities based on target and calculated solids and gas velocities, residence times, and temperatures.


2021 ◽  
Author(s):  
Minji Kim ◽  
Tatsunori Masaki ◽  
Kentaro Ikuta ◽  
Eiji Iwamoto ◽  
Yoshinobu Uemoto ◽  
...  

Abstract We investigated the physiological changes during the fattening period and production characteristics in Japanese Black steers bred and raised using the typical feeding system in Japan. Here, 21 Japanese black steers aged 12 months were used, and the experimental period was divided into early (12–14 months of age), middle (15–22 months), and late fattening phases (23–30 months). The liver transcriptome, blood metabolites, hormones, and rumen fermentation characteristics were analyzed. The blood triglyceride and non-esterified fatty acid concentrations increased, and blood ketone levels decreased, with fattening phases. Blood insulin increased with fattening phases and was higher in groups with high carcass weight and marbling. Rumen fermentation characteristics showed high propionate levels and low butyrate levels in late fattening phases, likely due to increased energy intake. Genes related to glucose metabolism, such as SESN3, INSR, LEPR, and FOXO3, were down-regulated in late fattening phases. Genes related to lipid metabolism, such as FABP4, were up-regulated, whereas FADS1 and FADS2 were down-regulated. These findings suggest that the physiological changes resulted from changes in the energy content and composition of diets. Liver metabolism changed with changes in fat metabolism. Insulin was strongly associated with physiological changes and productivity in Japanese Black cattle.


2021 ◽  
Author(s):  
David Wolff

Abstract For annealing, brazing or sintering, furnace atmospheres help ensure that metals thermal processors obtain the results they need. Hydrogen-containing atmospheres are used to protect surfaces from oxidation, and to ensure satisfactory thermal processing results. Hydrogen-containing atmospheres make thermal processing more forgiving because the hydrogen improves heat conduction and actively cleans heated surfaces – reducing oxides and destroying surface impurities. For powder based fabrication such as P/M, MIM or binder-jet metal AM, the use of a hydrogen-containing thermal processing atmosphere ensures the highest possible density of the sintered parts without necessitating the use of post-processing techniques. Users of pure hydrogen or hydrogen-containing gas blend atmospheres often struggle with hydrogen supply options. Hydrogen storage may create compliance problems due to its flammability and high energy content. Hydrogen generation enables hydrogen use without hydrogen storage issues. Deployment of hydrogen generation can ease the addition of thermal processing atmospheres to new and existing processing facilities.


2021 ◽  
Vol 1045 ◽  
pp. 194-202
Author(s):  
Siviwe H. Bunge ◽  
James L. Topkin ◽  
Joshua Gorimbo ◽  
Diakanua B. Nkazi

Sludge and screenings management is increasingly becoming a dilemma due its accumulating and tightening environmental regulations that limit its disposal methods. Various sludge management options have been researched, ranging from incineration, thermochemical liquefaction, to pyrolysis and gasification. This work proposes syngas, bio-oil, chemical resources and bio-char production for beneficiation through gasification of a mixture of sludge and screenings at different ratios of 25/75, 50/50 and 75/25. It also studies mass loss and toxins possible destruction by gasification temperatures and reactions. Toxicity and CHNS analysis before and after gasification were aimed at finding sludge energy content, while thermogravimetric analysis (TGA), was to find sampling and stopping temperatures during gasification. The overall best results of high syngas quality (high LHV, H2, CO and CH4 contents) and high quality bio-oil (i.e. cleanest, with high crude oil equivalent bonds such as C1 up to C36 and higher applicable bio-oil resources and chemical species obtained) was achieved by a 75/25 ratio, followed by a 50/50 ratio. The results also showed some possibility of biological and chlorinated hydrocarbon toxins (PCBs and PAHs) break down as well as the reduction of sludge and screenings to about 32% of the initial mass. These results can be further investigated for syngas application in power generation and liquid fuel production. Char toxicity can be analysed for its application in agriculture and for its adsorption properties. Char can be analysed for the presence of metals in it.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5483
Author(s):  
Ihsan Hamawand ◽  
Wilton da Silva ◽  
Saman Seneweera ◽  
Jochen Bundschuh

There are four main waste products produced during the harvesting and milling process of sugarcane: cane trash, molasses, bagasse and mill mud–boiler ash mixture. This study investigates the value proposition of different techniques currently not being adopted by the industry in the utilisation of these wastes. The study addresses the technical challenges and the environmental impact associated with these wastes and comes up with some recommendations based on the recent findings in the literature. All the biomass wastes such as bagasse, trash (tops) and trash (leaves) have shown great potential in generating higher revenue by converting them to renewable energy than burning them (wet or dry). However, the energy content in the products from all the utilisation methods is less than the energy content of the raw product. This study has found that the most profitable and challenging choice is producing ethanol or ethanol/biogas from these wastes. The authors recommend conducting more research in this field in order to help the sugar industry to compete in the international market.


2021 ◽  
Vol 19 ◽  
pp. 7-11
Author(s):  
B. Day ◽  
A. Pourmovahed ◽  

Fuel cells are becoming an increasingly more enticing option to power drones for extended use applications. This is because under certain conditions, fuel cell systems are able to more efficiently store fuel and, therefore, energy compared to standard battery options. This reality has been proven through multiple research efforts and is reviewed in this paper. It is necessary to review the current state of PEM fuel cell technology for drone applications to determine the extent of its limitations and feasibility. For this reason, the latest developments in low temperature and high temperature PEM fuel cells were studied including their limitations and sensitivity to contamination with a focus on drone applications. It has been reported that hydrogen powered fuel cell systems are more efficient than conventional battery applications when the energy content is higher than 4 MJ. A hybrid fuel cell and battery powertrain is preferred for the purpose of counterbalancing the deficiencies of both individual cases. Currently available products were explored, and it was found that there are fuel cell systems available that are capable of powering drones in excess of 23 kg (50 lb).


2021 ◽  
Vol 19 ◽  
pp. 7-11
Author(s):  
B. Day ◽  
A. Pourmovahed ◽  

Fuel cells are becoming an increasingly more enticing option to power drones for extended use applications. This is because under certain conditions, fuel cell systems are able to more efficiently store fuel and, therefore, energy compared to standard battery options. This reality has been proven through multiple research efforts and is reviewed in this paper. It is necessary to review the current state of PEM fuel cell technology for drone applications to determine the extent of its limitations and feasibility. For this reason, the latest developments in low temperature and high temperature PEM fuel cells were studied including their limitations and sensitivity to contamination with a focus on drone applications. It has been reported that hydrogen powered fuel cell systems are more efficient than conventional battery applications when the energy content is higher than 4 MJ. A hybrid fuel cell and battery powertrain is preferred for the purpose of counterbalancing the deficiencies of both individual cases. Currently available products were explored, and it was found that there are fuel cell systems available that are capable of powering drones in excess of 23 kg (50 lb).


Sign in / Sign up

Export Citation Format

Share Document