Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number

1998 ◽  
Vol 358 ◽  
pp. 299-333 ◽  
Author(s):  
OLEG ZIKANOV ◽  
ANDRE THESS

The transformation of initially isotropic turbulent flow of electrically conducting incompressible viscous fluid under the influence of an imposed homogeneous magnetic field is investigated using direct numerical simulation. Under the assumption of large kinetic and small magnetic Reynolds numbers (magnetic Prandtl number Pm[Lt ]1) the quasi-static approximation is applied for the computation of the magnetic field fluctuations. The flow is assumed to be homogeneous and contained in a three-dimensional cubic box with periodic boundary conditions. Large-scale forcing is applied to maintain a statistically steady level of the flow energy. It is found that the pathway traversed by the flow transformation depends decisively on the magnetic interaction parameter (Stuart number). If the magnetic interaction number is small the flow remains three-dimensional and turbulent and no detectable deviation from isotropy is observed. In the case of a strong magnetic field (large magnetic interaction parameter) a rapid transformation to a purely two-dimensional steady state is obtained in agreement with earlier analytical and numerical results for decaying MHD turbulence. At intermediate values of the magnetic interaction parameter the system exhibits intermittent behaviour, characterized by organized quasi-two-dimensional evolution lasting several eddy-turnover times, which is interrupted by strong three-dimensional turbulent bursts. This result implies that the conventional picture of steady angular energy transfer in MHD turbulence must be refined. The spatial structure of the steady two-dimensional final flow obtained in the case of large magnetic interaction parameter is examined. It is found that due to the type of forcing and boundary conditions applied, this state always occurs in the form of a square periodic lattice of alternating vortices occupying the largest possible scale. The stability of this flow to three-dimensional perturbations is analysed using the energy stability method.

2000 ◽  
Vol 418 ◽  
pp. 265-295 ◽  
Author(s):  
B. MÜCK ◽  
C. GÜNTHER ◽  
U. MÜLLER ◽  
L. BÜHLER

This paper presents a numerical simulation of the magnetohydrodynamic (MHD) liquid metal flow around a square cylinder placed in a rectangular duct. In the hydrodynamic case, for a certain parameter range the well-known Kármán vortex street with three-dimensional flow patterns is observed, similar to the flow around a circular cylinder. In this study a uniform magnetic field aligned with the cylinder is applied and its influence on the formation and downstream transport of vortices is investigated. The relevant key parameters for the MHD flow are the Hartmann number M, the interaction parameter N and the hydrodynamic Reynolds number, all based on the side length of the cylinder. The Hartmann number M was varied in the range 0 [les ] M [les ] 85 and the interaction parameter N in the range 0 [les ] N [les ] 36. Results are presented for two fixed Reynolds numbers Re = 200 and Re = 250. The magnetic Reynolds number is assumed to be very small. The results of the numerical simulation are compared with known experimental and theoretical results. The hydrodynamic simulation shows characteristic intermittent pulsations of the drag and lift force on the cylinder. At Re = 200 a mix of secondary spanwise three-dimensional instabilities (A and B mode, rib vortices) could be observed. The spanwise wavelength of the rib vortices was found to be about 2–3 cylinder side lengths in the near wake. At Re = 250 the flow appears more organized showing a regular B mode pattern and a spanwise wavelength of about 1 cylinder side length. With an applied magnetic field a quasi-two-dimensional flow can be obtained at low N ≈ 1 due to the strong non-isotropic character of the electromagnetic forces. The remaining vortices have their axes aligned with the magnetic field. With increasing magnetic fields these vortices are further damped due to Hartmann braking. The result that the ‘quasi-two-dimensional’ vortices have a curvature in the direction of the magnetic field can be explained by means of an asymptotic analysis of the governing equations. With very high magnetic fields the time-dependent vortex shedding can be almost completely suppressed. By three-dimensional visualization it was possible to show characteristic paths of the electric current for this kind of flow, explaining the action of the Lorentz forces.


2019 ◽  
Vol 221 ◽  
pp. 01021
Author(s):  
Aleksandr Kraus ◽  
Evgeny Kraus ◽  
Ivan Shabalin

A two-dimensional and three-dimensional non-stationary problem of the interaction of a homogeneous impactor and a heterogeneous structure made of steel and ceramics and placed in a Kevlar pocket is considered. The model of the human body is a plate of gelatine with cylindrical inserts-imitators of human bones. The results of numerical simulation using different approaches for describing heterogeneous media are compared. On the basis of direct numerical simulation, it is shown that the gradient armor plate (steel + B4C) has the best weight and size parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Taichi Igarashi ◽  
Hiroshi Naito ◽  
Koji Fukagata

Flow around a circular cylinder controlled using plasma actuators is investigated by means of direct numerical simulation (DNS). The Reynolds number based on the freestream velocity and the cylinder diameter is set atReD=1000. The plasma actuators are placed at±90° from the front stagnation point. Two types of forcing, that is, two-dimensional forcing and three-dimensional forcing, are examined and the effects of the forcing amplitude and the arrangement of plasma actuators are studied. The simulation results suggest that the two-dimensional forcing is primarily effective in drag reduction. When the forcing amplitude is higher, the mean drag and the lift fluctuations are suppressed more significantly. In contrast, the three-dimensional forcing is found to be quite effective in reduction of the lift fluctuations too. This is mainly due to a desynchronization of vortex shedding. Although the drag reduction rate of the three-dimensional forcing is slightly lower than that of the two-dimensional forcing, considering the power required for the forcing, the three-dimensional forcing is about twice more efficient.


1979 ◽  
Vol 90 (1) ◽  
pp. 129-143 ◽  
Author(s):  
Steven A. Orszag ◽  
Cha-Mei Tang

The formation of singularities in two-dimensional magnetohydrodynamic flow is investigated by direct numerical simulation. It is shown that two-dimensional magnetohydrodynamic turbulence is not as singular as three-dimensional hydrodynamic turbulence (in the sense that it has a less highly excited small-scale structure) but that it is more singular than two-dimensional hydrodynamic turbulence.


2009 ◽  
Vol 2009.46 (0) ◽  
pp. 521-522
Author(s):  
Takashi YOSHIDA ◽  
Shinya NANJYO ◽  
Hiroki INOUE ◽  
Hajime NOBUTA

2007 ◽  
Vol 579 ◽  
pp. 383-412 ◽  
Author(s):  
ANDRÉ THESS ◽  
OLEG ZIKANOV

We report a theoretical investigation of the robustness of two-dimensional inviscid magnetohydrodynamic (MHD) flows at low magnetic Reynolds numbers with respect to three-dimensional perturbations. We use a combination of linear stability analysis and direct numerical simulations to analyse three problems, namely the flow in the interior of a triaxial ellipsoid, and two unbounded flows: a vortex with elliptical streamlines and a vortex sheet parallel to the magnetic field. The flow in a triaxial ellipsoid is found to present an exact analytical model which demonstrates both the existence of inviscid unstable three-dimensional modes and the stabilizing role of the magnetic field. The nonlinear evolution of the flow is characterized by intermittency typical of other MHD flows with long periods of nearly two-dimensional behaviour interrupted by violent three-dimensional transients triggered by the instability. We demonstrate, using the second model, that motion with elliptical streamlines perpendicular to the magnetic field becomes unstable with respect to the elliptical instability once the magnetic interaction parameter falls below a critical magnitude whose value tends to infinity as the eccentricity of the streamlines increases. Furthermore, the third model indicates that vortex sheets parallel to the magnetic field, which are unstable for any velocity and any magnetic field, emit eddies with vorticity perpendicular to the magnetic field. Whether the investigated instabilities persist in the presence of small but finite viscosity, in which case two-dimensional turbulence would represent a singular state of MHD flows, remains an open question.


Sign in / Sign up

Export Citation Format

Share Document