Three-dimensional MHD flows in rectangular ducts with internal obstacles

2000 ◽  
Vol 418 ◽  
pp. 265-295 ◽  
Author(s):  
B. MÜCK ◽  
C. GÜNTHER ◽  
U. MÜLLER ◽  
L. BÜHLER

This paper presents a numerical simulation of the magnetohydrodynamic (MHD) liquid metal flow around a square cylinder placed in a rectangular duct. In the hydrodynamic case, for a certain parameter range the well-known Kármán vortex street with three-dimensional flow patterns is observed, similar to the flow around a circular cylinder. In this study a uniform magnetic field aligned with the cylinder is applied and its influence on the formation and downstream transport of vortices is investigated. The relevant key parameters for the MHD flow are the Hartmann number M, the interaction parameter N and the hydrodynamic Reynolds number, all based on the side length of the cylinder. The Hartmann number M was varied in the range 0 [les ] M [les ] 85 and the interaction parameter N in the range 0 [les ] N [les ] 36. Results are presented for two fixed Reynolds numbers Re = 200 and Re = 250. The magnetic Reynolds number is assumed to be very small. The results of the numerical simulation are compared with known experimental and theoretical results. The hydrodynamic simulation shows characteristic intermittent pulsations of the drag and lift force on the cylinder. At Re = 200 a mix of secondary spanwise three-dimensional instabilities (A and B mode, rib vortices) could be observed. The spanwise wavelength of the rib vortices was found to be about 2–3 cylinder side lengths in the near wake. At Re = 250 the flow appears more organized showing a regular B mode pattern and a spanwise wavelength of about 1 cylinder side length. With an applied magnetic field a quasi-two-dimensional flow can be obtained at low N ≈ 1 due to the strong non-isotropic character of the electromagnetic forces. The remaining vortices have their axes aligned with the magnetic field. With increasing magnetic fields these vortices are further damped due to Hartmann braking. The result that the ‘quasi-two-dimensional’ vortices have a curvature in the direction of the magnetic field can be explained by means of an asymptotic analysis of the governing equations. With very high magnetic fields the time-dependent vortex shedding can be almost completely suppressed. By three-dimensional visualization it was possible to show characteristic paths of the electric current for this kind of flow, explaining the action of the Lorentz forces.


The first part of the paper is a physical discussion of the way in which a magnetic field affects the stability of a fluid in motion. Particular emphasis is given to how the magnetic field affects the interaction of the disturbance with the mean motion. The second part is an analysis of the stability of plane parallel flows of fluids with finite viscosity and conductivity under the action of uniform parallel magnetic fields. We show that, in general, three-dimensional disturbances are the most unstable, thus disagreeing with the conclusion of Michael (1953) and Stuart (1954). We show how results obtained for two-dimensional disturbances can be used to calculate the most unstable three-dimensional disturbances and thence we prove that a parallel magnetic field can never completely stabilize a parallel flow.



1995 ◽  
Vol 299 ◽  
pp. 153-186 ◽  
Author(s):  
P. A. Davidson

It is well known that the imposition of a static magnetic field tends to suppress motion in an electrically conducting liquid. Here we look at the magnetic damping of liquid-mental flows where the Reynolds number is large and the magnetic Reynolds number is small. The magnetic field is taken as uniform and the fluid is either infinite in extent or else bounded by an electrically insulating surface S. Under these conditions, we find that three general principles govern the flow. First, the Lorentz force destroys kinetic energy but does not alter the net linear momentum of the fluid, nor does it change the component of angular momentum parallel to B. In certain flows, this implies that momentum, linear or angular, is conserved. Second, the Lorentz force guides the flow in such a way that the global Joule dissipation, D, decreases, and this decline in D is even more rapid than the corresponding fall in global kinetic energy, E. (Note that both D and E are quadratic in u). Third, this decline in relative dissipation, D / E, is essential to conserving momentum, and is achieved by propagating linear or angular momentum out along the magnetic field lines. In fact, this spreading of momentum along the B-lines is a diffusive process, familiar in the context of MHD turbulence. We illustrate these three principles with the aid of a number of specific examples. In increasing order of complexity we look at a spatially uniform jet evolving in time, a three-dimensional jet evolving in space, and an axisymmetric vortex evolving in both space and time. We start with a spatially uniform jet which is dissipated by the sudden application of a transverse magnetic field. This simple (perhaps even trivial) example provides a clear illustration of our three general principles. It also provides a useful stepping-stone to our second example of a steady three-dimensional jet evolving in space. Unlike the two-dimensional jets studied by previous investigators, a three-dimensional jet cannot be annihilated by magnetic braking. Rather, its cross-section deforms in such a way that the momentum flux of the jet is conserved, despite a continual decline in its energy flux. We conclude with a discussion of magnetic damping of axisymmetric vortices. As with the jet flows, the Lorentz force cannot destroy the motion, but rather rearranges the angular momentum of the flow so as to reduce the global kinetic energy. This process ceases, and the flow reaches a steady state, only when the angular momentum is uniform in the direction of the field lines. This is closely related to the tendency of magnetic fields to promote two-dimensional turbulence.



1998 ◽  
Vol 358 ◽  
pp. 299-333 ◽  
Author(s):  
OLEG ZIKANOV ◽  
ANDRE THESS

The transformation of initially isotropic turbulent flow of electrically conducting incompressible viscous fluid under the influence of an imposed homogeneous magnetic field is investigated using direct numerical simulation. Under the assumption of large kinetic and small magnetic Reynolds numbers (magnetic Prandtl number Pm[Lt ]1) the quasi-static approximation is applied for the computation of the magnetic field fluctuations. The flow is assumed to be homogeneous and contained in a three-dimensional cubic box with periodic boundary conditions. Large-scale forcing is applied to maintain a statistically steady level of the flow energy. It is found that the pathway traversed by the flow transformation depends decisively on the magnetic interaction parameter (Stuart number). If the magnetic interaction number is small the flow remains three-dimensional and turbulent and no detectable deviation from isotropy is observed. In the case of a strong magnetic field (large magnetic interaction parameter) a rapid transformation to a purely two-dimensional steady state is obtained in agreement with earlier analytical and numerical results for decaying MHD turbulence. At intermediate values of the magnetic interaction parameter the system exhibits intermittent behaviour, characterized by organized quasi-two-dimensional evolution lasting several eddy-turnover times, which is interrupted by strong three-dimensional turbulent bursts. This result implies that the conventional picture of steady angular energy transfer in MHD turbulence must be refined. The spatial structure of the steady two-dimensional final flow obtained in the case of large magnetic interaction parameter is examined. It is found that due to the type of forcing and boundary conditions applied, this state always occurs in the form of a square periodic lattice of alternating vortices occupying the largest possible scale. The stability of this flow to three-dimensional perturbations is analysed using the energy stability method.



1971 ◽  
Vol 49 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Kanefusa Gotoh

The effect of a uniform and parallel magnetic field upon the stability of a free shear layer of an electrically conducting fluid is investigated. The equations of the velocity and the magnetic disturbances are solved numerically and it is shown that the flow is stabilized with increasing magnetic field. When the magnetic field is expressed in terms of the parameter N (= M2/R2), where M is the Hartmann number and R is the Reynolds number, the lowest critical Reynolds number is caused by the two-dimensional disturbances. So long as 0 [les ] N [les ] 0·0092 the flow is unstable at all R. For 0·0092 < N [les ] 0·0233 the flow is unstable at 0 < R < Ruc where Ruc decreases as N increases. For 0·0233 < N < 0·0295 the flow is unstable at Rlc < R < Ruc where Rlc increases with N. Lastly for N > 0·0295 the flow is stable at all R. When the magnetic field is measured by M, the lowest critical Reynolds number is still due to the two-dimensional disturbances provided 0 [les ] M [les ] 0·52, and Rc is given by the corresponding Rlc. For M > 0·52, Rc is expressed as Rc = 5·8M, and the responsible disturbance is the three-dimensional one which propagates at angle cos−1(0·52/M) to the direction of the basic flow.



2016 ◽  
Vol 28 (01) ◽  
pp. 1650002 ◽  
Author(s):  
Diana Barseghyan ◽  
Pavel Exner ◽  
Hynek Kovařík ◽  
Timo Weidl

The aim of the paper is to derive spectral estimates into several classes of magnetic systems. They include three-dimensional regions with Dirichlet boundary as well as a particle in [Formula: see text] confined by a local change of the magnetic field. We establish two-dimensional Berezin–Li–Yau and Lieb–Thirring-type bounds in the presence of magnetic fields and, using them, get three-dimensional estimates for the eigenvalue moments of the corresponding magnetic Laplacians.



2018 ◽  
Vol 861 ◽  
pp. 382-406 ◽  
Author(s):  
Oliver G. W. Cassells ◽  
Tony Vo ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to elucidate the linear transient growth mechanisms in a uniform duct with square cross-section applicable to flows of electrically conducting fluids under the influence of an external magnetic field. A particular focus is given to the question of whether at high magnetic fields purely two-dimensional mechanisms exist, and whether these can be described by a computationally inexpensive quasi-two-dimensional model. Two Reynolds numbers of $5000$ and $15\,000$ and an extensive range of Hartmann numbers $0\leqslant \mathit{Ha}\leqslant 800$ were investigated. Three broad regimes are identified in which optimal mode topology and non-modal growth mechanisms are distinct. These regimes, corresponding to low, moderate and high magnetic field strengths, are found to be governed by the independent parameters; Hartmann number, Reynolds number based on the Hartmann layer thickness $R_{H}$ and Reynolds number built upon the Shercliff layer thickness $R_{S}$, respectively. Transition between regimes respectively occurs at $\mathit{Ha}\approx 2$ and no lower than $R_{H}\approx 33.\dot{3}$. Notably for the high Hartmann number regime, quasi-two-dimensional magnetohydrodynamic models are shown to be excellent predictors of not only transient growth magnitudes, but also the fundamental growth mechanisms of linear disturbances. This paves the way for a precise analysis of transition to quasi-two-dimensional turbulence at much higher Hartmann numbers than is currently achievable.



Author(s):  
Jasim Mohmed Jasim Jasim ◽  
Iryna Shvedchykova ◽  
Igor Panasiuk ◽  
Julia Romanchenko ◽  
Inna Melkonova

An approach is proposed to carry out multivariate calculations of the magnetic field distribution in the working gaps of a plate polygradient matrix of an electromagnetic separator, based on a combination of the advantages of two- and three-dimensional computer modeling. Two-dimensional geometric models of computational domains are developed, which differ in the geometric dimensions of the plate matrix elements and working air gaps. To determine the vector magnetic potential at the boundaries of two-dimensional computational domains, a computational 3D experiment is carried out. For this, three variants of the electromagnetic separator are selected, which differ in the size of the working air gaps of the polygradient matrices. For them, three-dimensional computer models are built, the spatial distribution of the magnetic field in the working intervals of the electromagnetic separator matrix and the obtained numerical values of the vector magnetic potential at the boundaries of the computational domains are investigated. The determination of the values of the vector magnetic potential for all other models is carried out by interpolation. The obtained values of the vector magnetic potential are used to set the boundary conditions in a computational 2D experiment. An approach to the choice of a rational version of a lamellar matrix is substantiated, which provides a solution to the problem according to the criterion of the effective area of the working area. Using the method of simple enumeration, a variant of the structure of a polygradient matrix with rational geometric parameters is selected. The productivity of the electromagnetic separator with rational geometric parameters of the matrix increased by 3–5 % with the same efficiency of extraction of ferromagnetic inclusions in comparison with the basic version of the device



1995 ◽  
Vol 305 ◽  
pp. 281-305 ◽  
Author(s):  
P. C. Matthews ◽  
M. R. E. Proctor ◽  
N. O. Weiss

Convection in a compressible fiuid with an imposed vertical magnetic field is studied numerically in a three-dimensional Cartesian geometry with periodic lateral boundary conditions. Attention is restricted to the mildly nonlinear regime, with parameters chosen first so that convection at onset is steady, and then so that it is oscillatory.Steady convection occurs in the form of two-dimensional rolls when the magnetic field is weak. These rolls can become unstable to a mean horizontal shear flow, which in two dimensions leads to a pulsating wave in which the direction of the mean flow reverses. In three dimensions a new pattern is found in which the alignment of the rolls and the shear flow alternates.If the magnetic field is sufficiently strong, squares or hexagons are stable at the onset of convection. Both the squares and the hexagons have an asymmetrical topology, with upflow in plumes and downflow in sheets. For the squares this involves a resonance between rolls aligned with the box and rolls aligned digonally to the box. The preference for three-dimensional flow when the field is strong is a consequence of the compressibility of the layer- for Boussinesq magnetoconvection rolls are always preferred over squares at onset.In the regime where convection is oscillatory, the preferred planform for moderate fields is found to be alternating rolls - standing waves in both horizontal directions which are out of phase. For stronger fields, both alternating rolls and two-dimensional travelling rolls are stable. As the amplitude of convection is increased, either by dcereasing the magnetic field strength or by increasing the temperature contrast, the regular planform structure seen at onset is soon destroyed by secondary instabilities.



2012 ◽  
Vol 457-458 ◽  
pp. 884-890
Author(s):  
Megumi Uryu ◽  
Katsuyuki Kida ◽  
Takashi Honda ◽  
Kenichi Saruwatari ◽  
Edson Costa Santos ◽  
...  

Fatigue failure of machine components occurs when cracks form in the stress concentration area and propagate under continued loading during component work. In order to understand the relation between the phenomena of stress concentration and crack propagation, non-destructive evaluation methods using in-situ measurements in the stress concentration areas are necessary. In the present work, a scanning Hall probe microscope (SHPM) equipped with a GaAs film sensor was developed and the three dimensional magnetic fields were observed at room temperature in air. The effect of stress on the changes in the magnetic field in steel components is reported. A steel specimen (JIS SKS93) embedded in acrylic resin were strained at different loads and the magnetic field before and after straining were observed. The obtained magnetic images clearly corresponded with the shape of the steel plate. It was possible to measure the changes in the magnetic field of the steel sample after straining under tensile loading, by neutralizing the initial magnetic field of the specimens prior to testing.



1992 ◽  
Vol 06 (24) ◽  
pp. 1531-1534
Author(s):  
CHANGHONG ZHU

We show that for a three-dimensional non-relativistic spinor confined on a plane, the spin-up component obeys the same equation of motion as a two-dimensional spinor. Threshold energy solution is investigated when the electron is moving in the vortex field. It can be proved from the index theorem that the existence of the threshold states depends on the magnetic flux only, not on the magnetic field configuration.



Sign in / Sign up

Export Citation Format

Share Document