Coenobichnus currani (new ichnogenus and ichnospecies): Fossil trackway of a land hermit crab, early Holocene, San Salvador, Bahamas

2003 ◽  
Vol 77 (3) ◽  
pp. 576-582 ◽  
Author(s):  
Sally E. Walker ◽  
Steven M. Holland ◽  
Lisa Gardiner

Land hermit crabs (Coenobitidae) are widespread and abundant in Recent tropical and subtropical coastal environments, yet little is known about their fossil record. A walking trace, attributed to a land hermit crab, is described herein as Coenobichnus currani (new ichnogenus and ichnospecies). This trace fossil occurs in an early Holocene eolianite deposit on the island of San Salvador, Bahamas. The fossil trackway retains the distinctive right and left asymmetry and interior drag trace that are diagnostic of modern land hermit crab walking traces. The overall size, dimensions and shape of the fossil trackway are similar to those produced by the modem land hermit crab, Coenobita clypeatus, which occurs in the tropical western Atlantic region. The trackway was compared to other arthropod traces, but it was found to be distinct among the arthropod traces described from dune or other environments. The new ichnogenus Coenobichnus is proposed to accommodate the asymmetry of the trackway demarcated by left and right tracks. The new ichnospecies Coenobichnus currani is proposed to accommodate the form of the proposed Coenobichnus that has a shell drag trace.

1992 ◽  
Vol 66 (4) ◽  
pp. 535-558 ◽  
Author(s):  
S. E. Walker

Hermit crabs have left a rich fossil legacy of epi- and endobionts that bored or encrusted hermit crab-inhabited shells in specific ways. Much of this rich taphonomic record, dating from the middle Jurassic, has been overlooked. Biological criteria to recognize hermitted shells in the fossil record fall within two major categories: 1) massive encrustations, such as encrusting bryozoans; and 2) subtle, thin encrustations, borings, or etchings that surround or penetrate the aperture of the shell. Massive encrustations are localized in occurrence, whereas subtle trace fossils and body fossils are common, cosmopolitan, and stratigraphically long-ranging. Important trace fossils and body fossils associated with hermit crabs are summarized here, with additional new fossil examples from the eastern Gulf Coast.Helicotaphrichnus, a unique hermit crab-associated trace fossil, is reported from the Eocene of Mississippi, extending its stratigraphic range from the Pleistocene of North America and the Miocene of Europe.


2007 ◽  
Vol 81 (6) ◽  
pp. 1466-1475 ◽  
Author(s):  
Makiko Ishikawa ◽  
Tomoki Kase

Identification of tracemakers is of primary importance for evaluating the biotic interactions inferred from bore holes in fossil shell assemblages. Domicile bore holes in the subapical whorls of gastropods produced by spionid polychaete Dipolydora sp., supposed to be commensal with hermit crabs, are common in dead gastropod assemblages from deepwater habitats in the Philippines. These holes exhibit unique features and support a new criterion for the interpretation of nonpredatory borings in fossil gastropods. Diagnostic of these bore holes are: small circular to elliptical outer opening, the presence of weak dissolution of the columella beneath the bore hole, and the presence of a hollowed tube composed of detritus held together with mucus within some gastropod whorls anterior to the hole. The two selection factors of subapical whorls and elongate shells are supplementary criteria for recognition of these holes. Bore holes are recognized here in a deepwater gastropod assemblage from the upper Pliocene Shinzato Formation of Okinawa, Japan, and named Polydorichnus subapicalis n. igen. and isp. These holes are identical to modern examples exhibiting similar site and species selectivity. P. subapicalis has its oldest fossil record in the upper Miocene of the Philippines, was common in offshore assemblages from the Miocene onward, and is a good indicator of occupation by a hermit crab and for commensalism between polychaetes and hermit crabs.


2008 ◽  
Vol 68 (4) ◽  
pp. 859-867 ◽  
Author(s):  
MZ. Fantucci ◽  
R. Biagi ◽  
FL. Mantelatto

The aim of this study was to characterize the pattern of shell occupation by the hermit crab Isocheles sawayai Forest and Saint-Laurent, 1968, from the Caraguatatuba region. The percentage of shell types that were occupied and the morphometric relationships between hermit crabs and occupied shells were analyzed from systematized collections that were conducted monthly from July 2001 to June 2003. A total of 373 individuals were captured (297 males, 41 non-ovigerous females, 25 ovigerous females and 10 intersexes), occupying 17 species of gastropod shells. Stramonita haemastoma (Linnaeus, 1767) (49.87%) was the significantly most occupied species (χ2 = 89.30; P < 0.05) followed, with no significant difference, by Phalium granulatum (Born, 1778) (11.53%), Polinices hepaticus (Roding, 1798) (8.31%) and Cymatium parthenopeum (von Salis, 1793) (6.97%). All the morphometric relationships between hermit crabs and occupied shells showed high (r > 0.68) and significant (P < 0.05) correlation values, which is an important indication that in this I. sawayai population the animals occupied adequate shells. The high number of occupied shell species and relative plasticity indicated that, for the studied population, occupation is influenced by the shell availability.


2020 ◽  
Vol 295 (1) ◽  
pp. 17-22
Author(s):  
Giovanni Pasini ◽  
Alessandro Garassino ◽  
Torrey Nyborg ◽  
Stephan G. Dunbar ◽  
René H.B. Fraaije

An unusual fossil in situ paguroid hermit crab is here reported from the Oligocene Pysht Formation, Washington (USA). Paguroid specimens preserved within their host gastropod shells are rare in the fossil record. Only a few reports of in situ paguroid hermit crabs preserved within their host gastropod shells have been reported from the Cenozoic.


1992 ◽  
Vol 6 ◽  
pp. 302-302 ◽  
Author(s):  
Sally E. Walker

Biological parameters, in addition to physical parameters, are important in determining past ecology, taphonomy and the effects of human intervention. Research conducted on a Recent community of gastropods and two late Pleistocene fossil assemblages from Puerto Penasco, Mexico, reveal a complex pattern of interrelationships among gastropod shell users. First, shell representation is biased in the intertidal of Puerto Penasco, Mexico, because of a complex mosaic of secondary shell occupants. Hermit crabs (five species) represent almost half (47%) of the intertidal gastropod shell resource available throughout the year. Living snails are represented by 17 out of the 32 gastropod taxa. Additionally, hermit amphipods (three species) occupy ten gastropod taxa. Hermit crabs and hermit amphipods retain the shells in anomalous habitats (that differ from the living snail). Second, physical factors act as a temporal component which affects shell use and availability during the seasons at Puerto Penasco. Late winter storms mix-up the intertidal distribution of living gastropods and hermit crabs. Subtidal to low intertidal shells appear in the high intertidal; living snails are buried under a thick bed of sand. Most importantly, empty shells become available, and the hermit amphipod population peaks. Thus, physical factors contribute to the demise of living snails (i.e, burial by sand) and the mixing of shells. However, the organisms (hermit crabs and amphipods) maintain this motif by retaining the shells in the anomalous habitats.Third, all hermit crab species (Paguristes anahuacus, Pagurus lepidus, Paguristes roseus), except for one (the high intertidal, Clibanarius digueti), have epi-and endobionts associated with the gastropod shell. More than 20 species of invertebrates bore into or encrust the hermitted shells at Penasco. Of these, the encrusting bryozoans Hippothoa, Hippopodinella adpressa, ?Floridia antiqua, Lichenopora, Antropora tincta and the boring spionid polychaetes (Polydora commensalis, Polydora, Boccardia) and spirorbid polychaetes (Spirorbis; Serpula) are important bionts to use in recognizing hermit crab shell use in the fossil record of the northern Gulf of California. The encrusting bryozoans (H. adpressa and A. tincta) are present on Pleistocene gastropods at the unusual Pelican Point terrace deposit (large gastropod shells preserved among large bryozoan encrusted cobbles) indicating hermit crab inhabitation. These bryozoans appear to protect the gastropods from taphonomic alteration.Finally, reworked fossil shells occur within the hermit crab guild and the beach drift assemblage. Hermit crabs retain fossil shells of the moon snail, Polinices, (n=two occurrences) and Turritella (n=3 occurrences). These species are common in the coquina beach rock which makes up the intertidal substrate of Puerto Penasco. However, reworking of fossil coquina is quite substantial in the beach drift assemblage. Three sampling periods (=150 samples) indicate the following: three species of fossil bivalves (Chione, Trachvcardium and Glycimeris) and five species of fossil gastropods (Oliva, Polinices, Muricanthus, Nassarius, and Turritella) dominated the beach drift assemblage (over 16, 600 fossil whole shells/fragments). Fossil Chione represented the most shells (958 valves;>15,557 fragments). Recent bivalves were represented by 1115 shells/fragments (representing 12 species) and Recent gastropods contained mostly fragments (1069 pieces; 30 species). Additionally, the fossil gastropods were large, unlike the species that occur today, which have been picked over by humans. Thus, a large part of active beach deposition at Puerto Penasco contains late Pleistocene shells, taphonomically altered by secondary occupants and beachcombers.


2017 ◽  
Author(s):  
Luis A. Buatois ◽  
◽  
Maria Gabriela Mangano

2021 ◽  
pp. 1-16
Author(s):  
Arymathéia Santos Franco ◽  
Rodrigo Temp Müller ◽  
Agustín G. Martinelli ◽  
Carolina A. Hoffmann ◽  
Leonardo Kerber

Abstract Traversodontidae is a group of Triassic herbivorous/omnivorous cynodonts that represents the most diversified lineage within Cynognathia. In southern Brazil, a rich fossil record of late Middle/mid-Late Triassic cynodonts has been documented, with Exaeretodon riograndensis Abdala, Barberena, and Dornelles, 2002 and Siriusgnathus niemeyerorum Pavanatto et al., 2018 representing two abundant and well-documented traversodontids. The present study provides a comparative analysis of the morphology of the nasal cavity, nasal recesses, nasolacrimal duct, and maxillary canals of both species using computed tomography, highlighting the changes that occurred in parallel to the origin of mammaliaforms. Our results show that there were no ossified turbinals or a cribriform plate delimiting the posterior end of the nasal cavity, suggesting these structures were probably cartilaginous as in nonmammaliaform cynodonts. Both species show lateral ridges on the internal surface of the roof of the nasal cavity, but the median ridge for the attachment of a nasal septum is absent. Exaeretodon riograndensis and S. niemeyerorum show recesses on the dorsal region of the nasal cavity, which increase the volume of the nasal cavity, potentially enhancing the olfactory chamber and contributing to the sense of smell. On the lateral sides of the nasal cavity, the analyzed taxa show a well-developed maxillary recess. Although E. riograndensis and S. niemeyerorum have roughly similar nasal cavities, in the former taxon, the space between the left and right dorsal recesses of the nasal cavity is uniform along its entire extension, whereas this space narrows posteriorly in S. niemeyerorum. Finally, the nasolacrimal duct of S. niemeyerorum is more inclined anteroposteriorly than in E. riograndensis.


2001 ◽  
Vol 75 (3) ◽  
pp. 590-606 ◽  
Author(s):  
Peter B. Marko ◽  
Jeremy B. C. Jackson

Geminate species are morphologically similar sister-species found on either side of the Isthmus of Panama. The existence of all geminates in the tropical Eastern Pacific ocean and the Caribbean Sea is most often explained by vicariance: closure of the Central American Seaway 3.1 to 3.5 Ma simultaneously isolated populations of species with amphi-American distributions. In this paper, we test the potential of morphological measurements for discriminating between Recent geminate species pairs from three genera (Arca, Arcopsis, and Barbatia) in the bivalve family Arcidae and examine the prospects for distinguishing nominal species in the fossil record. Fourteen morphological variables were used to characterize shell shape and multivariate methods were used to discriminate between five Recent species pairs. Collection sites were also used as a priori groups for discrimination to describe patterns of intraspecific morphological variation and to evaluate differences among samples from different geographic regions.On average, 84 percent of specimens within geminate pairs are classified correctly following five separate discriminant analyses with nominal species as the grouping variable. Although all but one arcid species pair are discriminated with high statistical significance, some collection sites within species are highly morphologically distinct. Overall, a large proportion of specimens from each collection locality (79 percent on average) can be classified correctly to site although no single site possessed a multivariate centroid that was significantly different from all other conspecific centroids. The distinctiveness of some collection sites, however, raises the possibility that some nominal species may harbor cryptic species, indicating the need for wider geographic surveys of both molecular and morphological variation within geminate species pairs.The eigenvalue coefficients derived from the Recent samples of one geminate pair (Arca mutabilis and A. imbricata) were used to assess the potential for identifying arcid species in the fossil record. Discriminant analyses of fossil Arca indicate that the forms that characterize Recent A. mutabilis and A. imbricata are present in the fossil record as far back as the Late Early Miocene, in the Cantaure Formation of Venezuela. Because a deep water connection between the Eastern Pacific and Western Atlantic existed until the Middle Miocene, the morphological differences associated with Recent A. mutabilis and A. imbricata likely existed well before the rising Isthmus affected ocean circulation patterns in tropical America. Therefore, despite great overall morphological similarity, these putative geminate species likely have a time of divergence that is at least four times older than final seaway closure. The geographic distribution of fossils also suggests that morphological forms associated with each Recent species had amphi-American distributions both before and after isthmus formation but are now geographically restricted to either side of the isthmus in the Recent fauna.


Sign in / Sign up

Export Citation Format

Share Document