late winter
Recently Published Documents


TOTAL DOCUMENTS

1617
(FIVE YEARS 323)

H-INDEX

57
(FIVE YEARS 7)

2023 ◽  
Vol 83 ◽  
Author(s):  
S. Shah ◽  
J. Yu ◽  
Q. Liu ◽  
G. Zhou ◽  
G. Yan ◽  
...  

Abstract Climatic factors play an essential role in the growth of tree ring width. In this study, we aimed to evaluate the correlation between climatic variables and tree-ring growth characteristics of Pinus sibirica in Altai mountains, northwestern China. This study being is first of its kind on climate growth analysis of Pinus sibirica in northwestern China. The study showed great potential to understand the species growing under the specific climatic conditions. Total of 70 tree cores collected from three sites in the sampling area, out of which 63 tree cores considered for this study. The effect of climatic variables which was studied include precipitation, temperature and PDSI. Our results showed that Tree Ring Width chronology has a significantly positive correlation with the late winter (March) temperature and significant negative correlation with the July temperatures. A significant correlation was observed with the late summer precipitation whereas no significant relation found with the Palmer Drought Severity Index. These significant correlations with temperature and precipitation suggested that this tree species had the potential for the reconstruction of the past climate in the area.


2022 ◽  
Author(s):  
Humfrey Melling

Abstract. This paper presents a systematic record of multi-year sea-ice thickness on the northern Canadian polar shelf, acquired during the winter of 2009–10. The data were acquired by submerged sonar positioned within Penny Strait where they measured floes drifting south from the notional “last ice area”. Ice was moving over the site until 10 December and fast thereafter. Old ice comprised about half of the 1669-km long survey. The average old-ice thickness within 25-km segments of the survey track was 3–4 m; maximum keels were 12–16 m deep. Floes with high average draft were of two types, one with interspersed low draft intervals and one without. The presence or absence of thin patches apparently distinguished aggregate floes comprised of sub-units of various ages and deformation states from units of more homogeneous age and deformation state. The former were larger and of somewhat lower mean thickness (1–5 km; 3.5–4.5 m) than the latter (400–600 m; 6.5–14 m). Calculated ice accretion onto the multi-year ice measured in autumn 2009 was used to seasonally adjust the observations to a date in late winter, when prior data are available. The adjusted mean thickness for all 25-km segments with 4 tenths or more old ice was 3.6 m (sample deviation of 0.4 m), a value indistinguishable within sampling error from values measured in the same area during the 1970s. The recently measured ice-draft distributions were also very similar to those from the 1970s.


2022 ◽  
Vol 8 ◽  
Author(s):  
Cian Kelly ◽  
Finn Are Michelsen ◽  
Jeppe Kolding ◽  
Morten Omholt Alver

Norwegian spring spawning herring is a migratory pelagic fish stock that seasonally navigates between distant locations in the Norwegian Sea. The spawning migration takes place between late winter and early spring. In this article, we present an individual-based model that simulated the spawning migration, which was tuned and validated against observation data. Individuals were modelled on a continuous grid coupled to a physical oceanographic model. We explore the development of individual model states in relation to local environmental conditions and predict the distribution and abundance of individuals in the Norwegian Sea for selected years (2015–2020). Individuals moved position mainly according to the prevailing coastal current. A tuning procedure was used to minimize the deviations between model and survey estimates at specific time stamps. Furthermore, 4 separate scenarios were simulated to ascertain the sensitivity of the model to initial conditions. Subsequently, one scenario was evaluated and compared with catch data in 5 day periods within the model time frame. Agreement between model and catch data varies throughout the season and between years. Regardless, emergent properties of the migration are identifiable that match observations, particularly migration trajectories that run perpendicular to deep bathymetry and counter the prevailing current. The model developed is efficient to implement and can be extended to generate multiple realizations of the migration path. This model, in combination with various sources of fisheries-dependent data, can be applied to improve real-time estimates of fish distributions.


2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Alain Hauchecorne ◽  
Chantal Claud ◽  
Philippe Keckhut ◽  
Alexis Mariaccia

AbstractIn early spring the stratospheric zonal circulation reverses from westerly to easterly. The transition, called Stratospheric Final Warming (SFW), may be smooth and late, mainly controlled by the solar radiative heating of the polar region, or early and abrupt with rapid increase of polar temperature and deceleration of the zonal wind, forced by the planetary wave activity. Here we present a study, based on 71 years meteorological reanalysis data. Two composites of radiative and dynamical SFWs have been built. There is a very significant difference in the evolution during the year of polar temperature and 60°N zonal wind between the two composites. The state of the polar vortex on given month is anticorrelated with its state 2 to 3 months earlier. Early winter is anticorrelated with mid-winter and mid-winter with late winter/early spring. The summer stratosphere keeps a memory of its state in April–May after the SFW until late June.


2022 ◽  
pp. 127425
Author(s):  
Shiqi Liu ◽  
Ping Wang ◽  
Jingjie Yu ◽  
Tianye Wang ◽  
Hongyan Cai ◽  
...  
Keyword(s):  

MAUSAM ◽  
2021 ◽  
Vol 42 (3) ◽  
pp. 275-278
Author(s):  
A.L. KOPPAR ◽  
S.C. NAGRATH

Ozone soundings made from Dakshin Gangotri, Antarctica during 1987 are presented. The vertical distribution of ozone over Antarctica is characterised by a double peak profile, one around 200-150 hPa and the other around 50 hPa. During late winter-early spring the upper peak is considerably depleted. Tropospheric ozoe remains low and nearly constant throughout the year.  


Waterbirds ◽  
2021 ◽  
Vol 44 (2) ◽  
Author(s):  
Amanda A. Haverland ◽  
M. Clay Green ◽  
Floyd Weckerly ◽  
Jennifer K. Wilson

2021 ◽  
Author(s):  
Blandine Chazarin ◽  
Margaux Benhaim-Delarbre ◽  
Charlotte Brun ◽  
Aude Anzeraey ◽  
Fabrice Bertile ◽  
...  

Grey mouse lemurs (Microcebus murinus) are a primate species exhibiting strong physiological seasonality in response to environmental energetic constraint. They notably store large amounts of lipids during early winter (EW), which are thereafter mobilized during late winter (LW), when food availability is low. In addition, they develop glucose intolerance in LW only. To decipher how the hepatic mechanisms may support such metabolic flexibility, we analyzed the liver proteome of adult captive male mouse lemurs, which seasonal regulations of metabolism and reproduction are comparable to their wild counterparts, during the phases of either constitution or use of fat reserves. We highlight profound changes that reflect fat accretion in EW at the whole-body level, however, without triggering an ectopic storage of fat in the liver. Moreover, molecular regulations would be in line with the lowering of liver glucose utilization in LW, and thus with reduced tolerance to glucose. However, no major regulation was seen in insulin signaling/resistance pathways, which suggests that glucose intolerance does not reach a pathological stage. Finally, fat mobilization in LW appeared possibly linked to reactivation of the reproductive system and enhanced liver detoxification may reflect an anticipation to return to summer levels of food intake. Altogether, these results show that the physiology of mouse lemurs during winter relies on solid molecular foundations in liver processes to adapt fuel partitioning while avoiding reaching a pathological state despite large lipid fluxes. This work emphasizes how the mouse lemur is of primary interest for identifying molecular mechanisms relevant to biomedical field.


2021 ◽  
Vol 48 (No. 4) ◽  
pp. 158-165
Author(s):  
Vadim Korzin ◽  
Valentina Gorina ◽  
Nikita Saplev

One of the reasons limiting the apricot expansion in the world is the short period of winter dormancy in the plants and the rapid development of generative buds in the spring. Apricot flower buds often die even after small spring return frosts that limit the commercial culture of this fruit crop. The aim of this investigation was to study collection-breeding plantations and select frost-resistant genotypes that have promise for commercial and breeding use. To solve this problem, the frost resistance of generative buds in 50 apricot cultivars and the breeding forms of various origins were studied by freezing treatments of the branches in a climatic chamber. The Czech cultivar ‘Leala’ was selected due to its best frost resistance. In late winter 2020–2021, six cultivars and breeding forms, which kept 41.8 to 65.9% of the generative buds alive, were identified. These genotypes are characterised by a slow development that prevents any negative freezing temperature effects. Thus, the results of the study confirmed the dependence of the adaptation mechanisms in apricot plants on the rates of their morphogenesis and abiotic factor pressures.


2021 ◽  
Author(s):  
Marguerite Johnson ◽  
Christopher MacGlover ◽  
Erika Peckham ◽  
Halcyon Killion ◽  
Samantha E. Allen ◽  
...  

Mycoplasma bovis is an economically important bacterial pathogen of cattle and bison that most commonly causes pneumonia, polyarthritis and mastitis. M. bovis is prevalent in cattle and commercial bison; however, infections in other host species are rare. In early 2019, we identified the first known cases of M. bovis in free-ranging pronghorn (Antilocapra americana). Here we report on additional pronghorn mortalities caused by M. bovis occurring in the same geographic region of northeastern Wyoming one year later. Genetic analysis by multilocus sequence typing (MLST) revealed that the mortalities were caused by the same M. bovis sequence type, which is unique among all sequence types documented in North America. To determine if pronghorn maintain chronic infections and to assess M. bovis status in other sympatric species, we performed surveillance in free-ranging ungulates. We found no evidence of subclinical infections in pronghorn (n=231) or mule deer (Odocoileus hemionus) (n=231) based on PCR testing of nasal swabs. To assess the likelihood of environmental transmission from livestock to pronghorn, we examined persistence of M. bovis in various substrates and conditions, revealing that M. bovis remains viable for 6 hours following inoculation of shaded water, and up to 3 hours in direct sunlight substrates. Our results indicate that environmental transmission of M. bovis from livestock to pronghorn is possible, and seasonality of infection could be due to shared resources during the late winter. This study also highlights the importance of further investigations to better understand transmission dynamics, to assess population level impacts to pronghorn, and to determine disease risks among other ungulate taxa.


Sign in / Sign up

Export Citation Format

Share Document