Three-wave coupling coefficients for non-uniform plasmas

1981 ◽  
Vol 26 (3) ◽  
pp. 407-418 ◽  
Author(s):  
T. Lindgren ◽  
J. Larsson ◽  
L. Stenflo

Resonant three-wave interaction in a spatially non-uniform magnetized fluid plasma is considered. We calculate the coupling coefficientsVjfor wave propagation in arbitrary directions and demonstrate that new terms, which appear inVjowing to the presence of density gradients, can dominate actual wave coupling processes.

1992 ◽  
Vol 47 (3) ◽  
pp. 361-371 ◽  
Author(s):  
Ralf Elvsén

The coupling coefficients for resonant three-wave interaction of magnetosonic and Alfvén waves, derived by means of kinetic theory, are presented. The calculations allow for anisotropic background temperatures. The results are compared with previous ones from fluid theory.


2018 ◽  
Vol 75 (10) ◽  
pp. 3521-3540 ◽  
Author(s):  
Etienne Dunn-Sigouin ◽  
Tiffany Shaw

Recent work has shown that extreme stratospheric wave-1 negative heat flux events couple with the troposphere via an anomalous wave-1 signal. Here, a dry dynamical core model is used to investigate the dynamical mechanisms underlying the events. Ensemble spectral nudging experiments are used to isolate the role of specific dynamical components: 1) the wave-1 precursor, 2) the stratospheric zonal-mean flow, and 3) the higher-order wavenumbers. The negative events are partially reproduced when nudging the wave-1 precursor and the zonal-mean flow whereas they are not reproduced when nudging either separately. Nudging the wave-1 precursor and the higher-order wavenumbers reproduces the events, including the evolution of the stratospheric zonal-mean flow. Mechanism denial experiments, whereby one component is fixed to the climatology and others are nudged to the event evolution, suggest higher-order wavenumbers play a role by modifying the zonal-mean flow and through stratospheric wave–wave interaction. Nudging all tropospheric wave precursors (wave-1 and higher-order wavenumbers) confirms they are the source of the stratospheric waves. Nudging all stratospheric waves reproduces the tropospheric wave-1 signal. Taken together, the experiments suggest the events are consistent with downward wave propagation from the stratosphere to the troposphere and highlight the key role of higher-order wavenumbers.


2014 ◽  
Vol 80 (4) ◽  
pp. 643-652 ◽  
Author(s):  
Erik Wallin ◽  
Jens Zamanian ◽  
Gert Brodin

The theory for nonlinear three-wave interaction in magnetized plasmas is reconsidered using quantum hydrodynamics. The general coupling coefficients are calculated for the generalized Bohm de Broglie term. It is found that the Manley–Rowe relations are fulfilled only if the form of the particle dispersive term coincides with the standard expression. The implications of our results are discussed.


Author(s):  
Mohammad A. Bukhari ◽  
Feng Qian ◽  
Oumar R. Barry ◽  
Lei Zuo

Abstract The study of simultaneous energy harvesting and vibration attenuation has recently been the focus in many acoustic meta-materials investigations. The studies have reported the possibility of harvesting electric power using electromechanical coupling; however, the effect of the electromechanical resonator on the obtained bandgap’s boundaries has not been explored yet. In this paper, we investigate metamaterial coupled to electromechanical resonators to demonstrate the effect of electromechanical coupling on the wave propagation analytically and experimentally. The electromechanical resonator is shunted to an external load resistor to harvest energy. We derive the analytical dispersion curve of the system and show the band structure for different load resistors and electromechanical coupling coefficients. To verify the analytical dispersion relations, we also simulate the system numerically. Furthermore, experiment is carried out to validate the analytical observations. The obtained observations can guide designers in selecting electromechanical resonator parameters for effective energy harvesting from meta-materials.


1971 ◽  
Vol 6 (1) ◽  
pp. 53-72 ◽  
Author(s):  
J. J. Galloway ◽  
H. Kim

In this paper, the coupled-mode equations and coupling coefficients for three-wave interaction are derived by a Lagrangian approach for a general medium. A derivation of the Low Lagrangian for a warm plasma is then given, which avoids certain problems associated with the original analysis. An application of the Lagrangian method is made to interaction between collinearly-propagating electrostatic waves, and a coupling coefficient is derived which agrees with a previous result obtained by direct expansion of the non-linear equations. The paper serves primarily to present and demonstrate a conceptually useful and efficient theoretical approach to non-linear wave interactions.


1975 ◽  
Vol 14 (3) ◽  
pp. 467-473 ◽  
Author(s):  
J. Larsson

The resonant interaction of three waves in a uniform hot magnetized plasma is examined. The coupling coefficients are obtained in a symmetric form from the Vlasov-Maxwell equations.


Sign in / Sign up

Export Citation Format

Share Document