Effect of Electromechanical Coupling on Locally Resonant Metastructures for Simultaneous Energy Harvesting and Vibration Attenuation Applications

Author(s):  
Mohammad A. Bukhari ◽  
Feng Qian ◽  
Oumar R. Barry ◽  
Lei Zuo

Abstract The study of simultaneous energy harvesting and vibration attenuation has recently been the focus in many acoustic meta-materials investigations. The studies have reported the possibility of harvesting electric power using electromechanical coupling; however, the effect of the electromechanical resonator on the obtained bandgap’s boundaries has not been explored yet. In this paper, we investigate metamaterial coupled to electromechanical resonators to demonstrate the effect of electromechanical coupling on the wave propagation analytically and experimentally. The electromechanical resonator is shunted to an external load resistor to harvest energy. We derive the analytical dispersion curve of the system and show the band structure for different load resistors and electromechanical coupling coefficients. To verify the analytical dispersion relations, we also simulate the system numerically. Furthermore, experiment is carried out to validate the analytical observations. The obtained observations can guide designers in selecting electromechanical resonator parameters for effective energy harvesting from meta-materials.

Author(s):  
Sergey I. Burkov ◽  
Oleg N. Pletnev ◽  
Pavel P. Turchin ◽  
Olga P. Zolotova ◽  
Boris P. Sorokin

Theoretical study of uniaxial pressure influence on the propagation characteristics of Lamb and SH-waves in lithium niobate plate is carried out. Electromechanical coupling coefficients and controlling coefficients of the pressure influence on phase velocity are calculated in various directions. Transformation and hybridization of acoustic modes upon a pressure influence have been derived in details. PACS: 43.25.Fe; 43.35.Cg; 77.65.-j


Author(s):  
Ankur Dwivedi ◽  
Arnab Banerjee ◽  
Sondipon Adhikari ◽  
Bishakh Bhattacharya

AbstractElastic mechanical metamaterials are the exemplar of periodic structures. These are artificially designed structures having idiosyncratic physical properties like negative mass and negative Young’s modulus in specific frequency ranges. These extreme physical properties are due to the spatial periodicity of mechanical unit cells, which exhibit local resonance. That is why scientists are researching the dynamics of these structures for decades. This unusual dynamic behavior is frequency contingent, which modulates wave propagation through these structures. Locally resonant units in the designed metamaterial facilitate bandgap formation virtually at any frequency for wavelengths much higher than the lattice length of a unit. Here, we analyze the band structure of piezo-embedded negative mass metamaterial using the generalized Bloch theorem. For a finite number of the metamaterial units coupled equation of motion of the system is deduced, considering purely resistive and shunted inductor energy harvesting circuits. Successively, the voltage and power produced by piezoelectric material along with transmissibility of the system are computed using the backward substitution method. The addition of the piezoelectric material at the resonating unit increases the complexity of the solution. The results elucidate, the insertion of the piezoelectric material in the resonating unit provides better tunability in the band structure for simultaneous energy harvesting and vibration attenuation. Non-dimensional analysis of the system gives physical parameters that govern the formation of mechanical and electromechanical bandgaps. Optimized numerical values of these system parameters are also found for maximum first attenuation bandwidth. Thus, broader bandgap generation enhances vibration attenuation, and energy harvesting can be simultaneously available, making these structures multifunctional. This exploration can be considered as a step towards the active elastic mechanical metamaterials design.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Winner Anigbogu ◽  
Hamzeh Bardaweel

In this article, a magnetomechanical metamaterial structure capable of simultaneous vibration attenuation and energy harvesting is presented. The structure consists of periodically arranged local resonators combining cantilever beams and permanent magnet-coil systems. A prototype of the metamaterial dual-function structure is fabricated, and models are developed. Results show good agreement between model simulation and experiment. Two frequency bandgaps are measured: 205–257 Hz and 587–639 Hz. Within these bandgaps, vibrations are completely attenuated. The level of vibration attenuation in the first bandgap is substantially larger than the level of vibration attenuation observed in the second bandgap. Mode shapes suggest that bending deformations experienced by the local resonators in the second bandgap are less than the deformations experienced in the first bandgap, and most vibrational energy is localized within the first bandgap where the fundamental resonant frequency is located, i.e., 224 Hz. The ability of the fabricated metamaterial structure to harvest electric power in these bandgaps is examined. Results show that vibration attenuation and energy harvesting characteristics of the metamaterial structure are coupled. Stronger vibration attenuation within the first bandgap has led to enhanced energy harvesting capabilities within this bandgap. Power measurements at optimum load resistance of 15 Ω reveal that maximum power generated within the first bandgap reaches 5.2 µW at 245 Hz. Compared with state-of-the-art, the metamaterial structure presented here shows a significant improvement in electric power generation, at considerably lower load resistance, while maintaining the ability to attenuate undesired vibrations within the frequency bandgap.


Author(s):  
Shun Chen ◽  
David Eager ◽  
Liya Zhao

This paper proposes a softening nonlinear aeroelastic galloping energy harvester for enhanced energy harvesting from concurrent wind flow and base vibration. Traditional linear aeroelastic energy harvesters have poor performance with quasi-periodic oscillations when the base vibration frequency deviates from the aeroelastic frequency. The softening nonlinearity in the proposed harvester alters the self-excited galloping frequency and simultaneously extends the large-amplitude base-excited oscillation to a wider frequency range, achieving frequency synchronization over a remarkably broadened bandwidth with periodic oscillations for efficient energy conversion from dual sources. A fully coupled aero-electro-mechanical model is built and validated with measurements on a devised prototype. At a wind speed of 5.5 m/s and base acceleration of 0.1 g, the proposed harvester improves the performance by widening the effective bandwidth by 300% compared to the linear counterpart without sacrificing the voltage level. The influences of nonlinearity configuration, excitation magnitude, and electromechanical coupling strength on the mechanical and electrical behavior are examined. The results of this paper form a baseline for future efficiency enhancement of energy harvesting from concurrent wind and base vibration utilizing monostable stiffness nonlinearities.


2002 ◽  
Vol 748 ◽  
Author(s):  
C. L. Zhao ◽  
Z. H. Wang ◽  
W. Zhu ◽  
O. K. Tan ◽  
H. H. Hng

ABSTRACTLead zirconate titanate (PZT) films are promising for acoustic micro-devices applications because of their extremely high electromechanical coupling coefficients and excellent piezoelectric response. Thicker PZT films are crucial for these acoustic applications. A hybrid sol-gel technology has been developed as a new approach to realize simple and cost-effective fabrication of high quality PZT thick films. In this paper, PZT53/47 thick films with a thickness of 5–50 μm are successfully deposited on Pt-coated silicon wafer by using the hybrid sol-gel technology. The obtained PZT thick films are dense, crack-free, and have a nano-sized microstructure. The processing parameters of this technology have been evaluated. The microstructure of the film has been observed using field-emission scanning electron microscopy and the crystallization process has been monitored by the X-ray diffraction. The thick films thus made are good candidates for fabrication of piezoelectric diaphragm which will be an essential element of microspeaker and microphone arrays.


2004 ◽  
Vol 14 (03) ◽  
pp. 837-846 ◽  
Author(s):  
GANG BU ◽  
DAUMANTAS CIPLYS ◽  
MICHAEL S. SHUR ◽  
LEO J. SCHOWALTER ◽  
SANDRA B. SCHUJMAN ◽  
...  

We report on the velocity V and the electromechanical coupling coefficient K2 of the first and the second leaky surface acoustic waves in various propagation directions in the a-plane AlN single-crystal. For c-propagation direction, the second leaky wave exhibited the velocity of 11016 m/s and K2 of 0.45%. For this direction, the temperature coefficient of frequency was found to be -30 ppm/°C. A near match of the velocities of the plane and leaky waves in the a-plane AlN allowed us to establish analytical relationships between the piezoelectric and elastic constants. A full set of elastic and piezoelectric constants of AlN has been evaluated by fitting the measured and calculated dependencies of velocities and electromechanical coupling coefficients on the propagation direction for both Rayleigh and leaky waves.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yue Zhao ◽  
Yi Qin ◽  
Lei Guo ◽  
Baoping Tang

Vibration-based energy harvesting technology is the most promising method to solve the problems of self-powered wireless sensor nodes, but most of the vibration-based energy harvesters have a rather narrow operation bandwidth and the operation frequency band is not convenient to adjust when the ambient frequency changes. Since the ambient vibration may be broadband and changeable, a novel V-shaped vibration energy harvester based on the conventional piezoelectric bimorph cantilevered structure is proposed, which successfully improves the energy harvesting efficiency and provides a way to adjust the operation frequency band of the energy harvester conveniently. The electromechanical coupling equations are established by using Euler-Bernoulli equation and piezoelectric equation, and then the coupled circuit equation is derived based on the series connected piezoelectric cantilevers and Kirchhoff's laws. With the above equations, the output performances of V-shaped structure under different structural parameters and load resistances are simulated and discussed. Finally, by changing the angle θ between two piezoelectric bimorph beams and the load resistance, various comprehensive experiments are carried out to test the performance of this V-shaped energy harvester under the same excitation. The experimental results show that the V-shaped energy harvester can not only improve the frequency response characteristic and the output performance of the electrical energy, but also conveniently tune the operation bandwidth; thus it has great application potential in actual structure health monitoring under variable working condition.


2013 ◽  
Vol 479-480 ◽  
pp. 3-7
Author(s):  
Chun Huy Wang

In the present study, various quantities of Bi2O3were added into 0.98(Na0.5K0.5)NbO3-0.02Bi(Na0.93K0.07)TiO3(0.98NKN-0.02BNKT) ceramics. It was found that 0.98NKN-0.02BNKTwith the addition of 0~0.5 wt.% Bi2O3exhibit relatively good piezoelectric properties. For 0.98NKN-0.02BNKT ceramics, the electromechanical coupling coefficients of the planar modekpand the thickness modektreach 0.40 and 0.47,respectively. For 0.98NKN-0.02BNKT ceramics with the addition of 0.3 wt.% Bi2O3, the electromechanical coupling coefficients ofthe planar modekpand the thickness modektreach 0.50 and 0.53, respectively. It is obvious that 0.98NKN-0.02BNKT solid solution ceramics by adding low quantities of Bi2O3is one of the promising lead-free ceramics for electromechanical transducer applications.


Sign in / Sign up

Export Citation Format

Share Document