warm plasma
Recently Published Documents


TOTAL DOCUMENTS

293
(FIVE YEARS 25)

H-INDEX

27
(FIVE YEARS 3)

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7383
Author(s):  
Mateusz Wnukowski ◽  
Wojciech Moroń

Warm plasma techniques are considered a promising method of tar removal in biomass-derived syngas. The fate of another problematic syngas impurity—hydrogen sulfide—is studied in this work. It is revealed that processing simulated syngas with a microwave plasma results in hydrogen sulfide conversion. For different gas flow rates (20–40 NLPM) and hydrogen sulfide concentrations ranging from 250 ppm to 750 ppm, the conversion rate varies from ca. 26% to 45%. The main sulfur-containing products are carbon disulfide (ca. 30% of total sulfur) and carbonyl sulfide (ca. 8% of total sulfur). Besides them, significantly smaller quantities of sulfates and benzothiophene are also detected. The main components of syngas have a tremendous impact on the fate of hydrogen sulfide. While the presence of carbon monoxide, methane, carbon dioxide, and tar surrogate (toluene) leads to the formation of carbonyl sulfide, carbon disulfide, sulfur dioxide, and benzothiophene, respectively, the abundance of hydrogen results in the recreation of hydrogen sulfide. Consequently, the presence of hydrogen in the simulated syngas is the main factor that determines the low conversion rate of hydrogen sulfide. Conversion of hydrogen sulfide into various sulfur compounds might be problematic in the context of syngas purification and the application of the right technique for sulfur removal.


Author(s):  
C. R. Chappell ◽  
A. Glocer ◽  
B. L. Giles ◽  
T. E. Moore ◽  
M. M. Huddleston ◽  
...  

The solar wind has been seen as the major source of hot magnetospheric plasma since the early 1960’s. More recent theoretical and observational studies have shown that the cold (few eV) polar wind and warmer polar cusp plasma that flow continuously upward from the ionosphere can be a very significant source of ions in the magnetosphere and can become accelerated to the energies characteristic of the plasma sheet, ring current, and warm plasma cloak. Previous studies have also shown the presence of solar wind ions in these magnetospheric regions. These studies are based principally on proxy measurements of the ratios of He++/H+ and the high charge states of O+/H+. The resultant admixture of ionospheric ions and solar wind ions that results has been difficult to quantify, since the dominant H+ ions originating in the ionosphere and solar wind are indistinguishable. The ionospheric ions are already inside the magnetosphere and are filling it from the inside out with direct access from the ionosphere to the center of the magnetotail. The solar wind ions on the other hand must gain access through the outer boundaries of the magnetosphere, filling the magnetosphere from the outside in. These solar wind particles must then diffuse or drift from the flanks of the magnetosphere to the near-midnight reconnection region of the tail which takes more time to reach (hours) than the continuously large outflowing ionospheric polar wind (10’s of min). In this paper we examine the magnetospheric filling using the trajectories of the different ion sources to unravel the intermixing process rather than trying to interpret only the proxy ratios. We compare the timing of the access of the ionospheric and solar wind sources and we use new merged ionosphere-magnetosphere multi-fluid MHD modeling to separate and compare the ionospheric and solar wind H+ source strengths. The rapid access of the initially cold polar wind and warm polar cusp ions flowing down-tail in the lobes into the mid-plane of the magnetotail, suggests that, coupled with a southward turning of the IMF Bz, these ions can play a key triggering role in the onset of substorms and subsequent large storms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mansour Khoram ◽  
S. Farhad Masoudi

AbstractThe plasma boundary layer is analyzed for a plasma in contact with a conducting plain surface where the ion temperature is comparable with the electron temperature and the plasma pressure is sufficiently high. The variations of electrical potential from the plasma-presheath boundary to the wall is studied using the fluidal formalism of plasma in three approaches; plasma and sheath asymptotic solutions and full solution. In the full solution approach, fluidal equations lead to a singularity when the ion velocity reaches the ion thermal speed. It is shown that removing the singularity causes a well-defined eigenvalue problem and leads to smooth solutions for the model equations. Some of the applicable aspects such as the floating velocity and density of ions, the floating electrical potential and an estimation of the floating thickness of the boundary layer are obtained. The dependency of these quantities on the ionization degree, the ion temperature and ion-neutral collision is examined too.


2021 ◽  
Vol 14 (2) ◽  
pp. 155-160

Abstract: We investigate the spectra of high-frequency electrostatic surface electron plasmon oscillations propagating normal to a dc-magnetic field. These oscillations are supported by two identical magnetoplasma slabs separated by a vacuum slab. Propagation characteristics of surface magnetoplasma oscillations and their coupling are studied by simultaneously solving the homogeneous system of equations obtained by matching the electrostatic fields at the interfaces together with the warm plasma dielectric function of upper hybrid waves. We demonstrate the existence of two propagating magnetoplasma electrostatic surface modes (backward and forward modes). The backward mode emerges at frequency ω=ω_uh=√(ω_pe^2+ω_ce^2 ), where ω_pe and ω_ce are the electron plasma frequency and the electron cyclotron frequency, respectivily, and the forward propagating mode emerges at a lower frequency ω=ω_uh-ω_pe. The forward and backward surface modes become coupled and form a single mode at upper hybrid resonance quasi-static value ω=ω_uh/√2. Keywords: Upper hybrid modes, Plasma slab waveguide, Coupled plasmon surface modes.


2021 ◽  
Author(s):  
Fredrik Leffe Johansson ◽  
Anders Eriksson ◽  
Nicolas Gilet ◽  
Pierre Henri ◽  
Gaëtan Wattieaux ◽  
...  

<div> <div> <div> <p>Context. The electrostatic potential of a spacecraft, V<sub>S</sub>, is important for the capabilities of in situ plasma measurements. Rosetta has been found to be negatively charged during most of the comet mission and even more so in denser plasmas.<br>Aims. Our goal is to investigate how the negative V<sub>S</sub> correlates with electron density and temperature and to understand the physics of the observed correlation.</p> <p>Methods. We applied full mission comparative statistics of V<sub>S</sub>, electron temperature, and electron density to establish V<sub>S</sub> dependence on cold and warm plasma density and electron temperature. We also used Spacecraft-Plasma Interaction System (SPIS) simulations and an analytical vacuum model to investigate if positively biased elements covering a fraction of the solar array surface can explain the observed correlations.</p> <p>Results. Here, the V<sub>S</sub> was found to depend more on electron density, particularly with regard to the cold part of the electrons, and less on electron temperature than was expected for the high flux of thermal (cometary) ionospheric electrons. This behaviour was reproduced by an analytical model which is consistent with numerical simulations.<br>Conclusions. Rosetta is negatively driven mainly by positively biased elements on the borders of the front side of the solar panels as these can efficiently collect cold plasma electrons. Biased elements distributed elsewhere on the front side of the panels are less efficient at collecting electrons apart from locally produced electrons (photoelectrons). To avoid significant charging, future spacecraft may minimise the area of exposed bias conductors or use a positive ground power system.</p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document