scholarly journals Ion-acoustic solitons in plasmas with two adiabatic constituents

2009 ◽  
Vol 76 (3-4) ◽  
pp. 277-286 ◽  
Author(s):  
FRANK VERHEEST ◽  
MANFRED A. HELLBERG

AbstractLarge amplitude ion-acoustic solitons are treated by a Sagdeev pseudopotential analysis, in a plasma with two adiabatic constituents, with the full inclusion of inertial and pressure effects for both. The sign of the supersonic species determines the polarity of the solitons, which are compressive in both constituents. Emphasis is placed on the determination of the soliton existence domains in compositional parameter space, allowing correct Sagdeev pseudopotential graphs to be easily generated, and offering insight into why limitations occur. Soliton velocities are bounded from below by the true acoustic velocity in the plasma model, and from above by the breakdown of the description when the supersonic ions reach their sonic point. Increases in the mass density ratio and the soliton velocity or decreases in the temperature ratio lead to increases in soliton amplitudes and decreases of the widths. Applications include hydrogen and electron–positron plasmas, and various kinds of dusty plasmas.

2017 ◽  
Vol 43 (2) ◽  
pp. 212-217
Author(s):  
Dong-Ning Gao ◽  
Yang Yang ◽  
Qiang Yan ◽  
Xiao-Yun Wang ◽  
Wen-Shan Duan

1997 ◽  
Vol 50 (2) ◽  
pp. 309 ◽  
Author(s):  
Y. N. Nejoh

The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with positrons. We have presented the region of existence of the ion-acoustic waves by analysing the structure of the pseudopotential. The region of existence sensitively depends on the positron to electron density ratio, the ion to electron mass ratio and the positron to electron temperature ratio. It is shown that the maximum Mach number increases as the positron temperature increases and the region of existence of the ion-acoustic waves spreads as the positron temperature increases. The present theory is applicable to analyse large amplitude ion-acoustic waves associated with positrons which may occur in space plasmas.


2011 ◽  
Vol 18 (8) ◽  
pp. 083702 ◽  
Author(s):  
R. S. Tiwari ◽  
S. L. Jain ◽  
M. K. Mishra

Sign in / Sign up

Export Citation Format

Share Document