Monotone but not positive subsets of the Cantor space

1987 ◽  
Vol 52 (3) ◽  
pp. 817-818 ◽  
Author(s):  
Randall Dougherty

A subset of the Cantor space ω2 is called monotone iff it is closed upward under the partial ordering ≤ defined by x ≤ y iff x(n) ≤ y(n) for all n ∈ ω. A set is -positive (-positive) iff it is monotone and -positive set is a countable union of -positive sets; a -positive set is a countable intersection of -positive sets. (See Cenzer [2] for background information on these concepts.) It is clear that any -positive set is and monotone; the converse holds for n ≤ 2 [2] and was conjectured by Dyck to hold for greater n. In this note, we will disprove this conjecture by giving examples of monotone sets (for n ≥ 3) which are not even -positive.First we note a few isomorphisms. The space (ω2, ≤) is isomorphic to the space (ω2 ≥), so instead of monotone and positive sets we may construct hereditary and negative sets (the analogous notions with “closed upward” replaced by “closed downward”). Also, (ω2, ≤) is isomorphic to ((ω), ⊆), where denotes the power set operator, or to ((S), ⊆) for any countably infinite set S.In order to remove extraneous notation from the proofs, we state the results in an abstract form (whose generality is deceptive).

2017 ◽  
Vol 82 (2) ◽  
pp. 576-589 ◽  
Author(s):  
KOSTAS HATZIKIRIAKOU ◽  
STEPHEN G. SIMPSON

AbstractLetSbe the group of finitely supported permutations of a countably infinite set. Let$K[S]$be the group algebra ofSover a fieldKof characteristic 0. According to a theorem of Formanek and Lawrence,$K[S]$satisfies the ascending chain condition for two-sided ideals. We study the reverse mathematics of this theorem, proving its equivalence over$RC{A_0}$(or even over$RCA_0^{\rm{*}}$) to the statement that${\omega ^\omega }$is well ordered. Our equivalence proof proceeds via the statement that the Young diagrams form a well partial ordering.


1961 ◽  
Vol 4 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Joachim Lambek

This is an expository note to show how an “infinite abacus” (to be defined presently) can be programmed to compute any computable (recursive) function. Our method is probably not new, at any rate, it was suggested by the ingenious technique of Melzak [2] and may be regarded as a modification of the latter.By an infinite abacus we shall understand a countably infinite set of locations (holes, wires etc.) together with an unlimited supply of counters (pebbles, beads etc.). The locations are distinguishable, the counters are not. The confirmed finitist need not worry about these two infinitudes: To compute any given computable function only a finite number of locations will be used, and this number does not depend on the argument (or arguments) of the function.


2017 ◽  
Vol 29 (4) ◽  
Author(s):  
Tiwadee Musunthia ◽  
Jörg Koppitz

AbstractIn this paper, we study the maximal subsemigroups of several semigroups of order-preserving transformations on the natural numbers and the integers, respectively. We determine all maximal subsemigroups of the monoid of all order-preserving injections on the set of natural numbers as well as on the set of integers. Further, we give all maximal subsemigroups of the monoid of all bijections on the integers. For the monoid of all order-preserving transformations on the natural numbers, we classify also all its maximal subsemigroups, containing a particular set of transformations.


1985 ◽  
Vol 50 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Michael C. Nagle ◽  
S. K. Thomason

Our purpose is to delineate the extensions (normal and otherwise) of the propositional modal logic K5. We associate with each logic extending K5 a finitary index, in such a way that properties of the logics (for example, inclusion, normality, and tabularity) become effectively decidable properties of the indices. In addition we obtain explicit finite axiomatizations of all the extensions of K5 and an abstract characterization of the lattice of such extensions.This paper refines and extends the Ph.D. thesis [2] of the first-named author, who wishes to acknowledge his debt to Brian F. Chellas for his considerable efforts in directing the research culminating in [2] and [3]. We also thank W. J. Blok and Gregory Cherlin for observations which greatly simplified the proofs of Theorem 3 and Corollary 10.By a logic we mean a set of formulas in the countably infinite set Var of propositional variables and the connectives ⊥, →, and □ (other connectives being used abbreviatively) which contains all the classical tautologies and is closed under detachment and substitution. A logic is classical if it is also closed under RE (from A↔B infer □A ↔□B) and normal if it is classical and contains □ ⊤ and □ (P → q) → (□p → □q). A logic is quasi-classical if it contains a classical logic and quasi-normal if it contains a normal logic. Thus a quasi-normal logic is normal if and only if it is classical, and if and only if it is closed under RN (from A infer □A).


1994 ◽  
Vol 59 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Lorenz Halbeisen ◽  
Saharon Shelah

AbstractIn this paper, we consider certain cardinals in ZF (set theory without AC, the axiom of choice). In ZFC (set theory with AC), given any cardinals and , either ≤ or ≤ . However, in ZF this is no longer so. For a given infinite set A consider seq1-1(A), the set of all sequences of A without repetition. We compare |seq1-1(A)|, the cardinality of this set, to ||, the cardinality of the power set of A. What is provable about these two cardinals in ZF? The main result of this paper is that ZF ⊢ ∀A(| seq1-1(A)| ≠ ||), and we show that this is the best possible result. Furthermore, it is provable in ZF that if B is an infinite set, then | fin(B)| < | (B*)| even though the existence for some infinite set B* of a function ƒ from fin(B*) onto (B*) is consistent with ZF.


A theory of descriptive Baire sets is developed for an arbitrary completely regular space. It is shown that descriptive Baire sets are Baire sets and that they form a system closed under countable union, countable intersection and intersection with a Baire set. If a descriptive Borel set (Rogers 1965) is a Baire set then it is a descriptive Baire set. If every open set is a countable union of closed sets, the descriptive Baire sets coincide with the descriptive Borel sets. It follows, in particular, that in a metric space a set is descriptive Baire, if, and only if, it is absolutely Borel and Lindelöf.


10.37236/3151 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Marcia J. Groszek

A partial ordering $\mathbb P$ is chain-Ramsey if, for every natural number $n$ and every coloring of the $n$-element chains from $\mathbb P$ in finitely many colors, there is a monochromatic subordering $\mathbb Q$ isomorphic to $\mathbb P$.  Chain-Ramsey partial orderings stratify naturally into levels.  We show that a countably infinite partial ordering with finite levels is chain-Ramsey if and only if it is biembeddable with one of a canonical collection of examples constructed from certain edge-Ramsey families of finite bipartite graphs.  A similar analysis applies to a large class of countably infinite partial orderings with infinite levels.


1974 ◽  
Vol 26 (3) ◽  
pp. 608-620 ◽  
Author(s):  
Jeremy Wilson

Let F be the group freely generated by the countably infinite set X = {x1, x2, . . . ,xi, . . . }. Let w(x1, x2, . . . , xn) be a reduced word representing an element of F and let G be an arbitrary group. Then V(w, G) will denote the setwhose elements will be called values of w in G. The subgroup of G generated by V(w, G) will be called the verbal subgroup of G with respect to w and be denoted by w(G).


1989 ◽  
Vol 26 (02) ◽  
pp. 325-344
Author(s):  
R. W. R. Darling

Let V be a countably infinite set, and let {Xn, n = 0, 1, ·· ·} be random vectors in which satisfy Xn = AnXn – 1 + ζ n , for i.i.d. random matrices {An } and i.i.d. random vectors {ζ n }. Interpretation: site x in V is occupied by Xn (x) particles at time n; An describes random transport of existing particles, and ζ n (x) is the number of ‘births' at x. We give conditions for (1) convergence of the sequence {Xn } to equilibrium, and (2) a central limit theorem for n–1/2(X 1 + · ·· + Xn ), respectively. When the matrices {An } consist of 0's and 1's, these conditions are checked in two classes of examples: the ‘drip, stick and flow model' (a stochastic flow with births), and a neural network model.


Author(s):  
John T. Annulis

SynopsisThe main result asserts that the base of an infinite dimensional Dedekind complete space with unit contains an infinite set of disjoint elements. From this result it can be shown that the dimension of Dedekind σ -complete spaces with unit is not countably infinite.


Sign in / Sign up

Export Citation Format

Share Document