scholarly journals REVERSE MATHEMATICS, YOUNG DIAGRAMS, AND THE ASCENDING CHAIN CONDITION

2017 ◽  
Vol 82 (2) ◽  
pp. 576-589 ◽  
Author(s):  
KOSTAS HATZIKIRIAKOU ◽  
STEPHEN G. SIMPSON

AbstractLetSbe the group of finitely supported permutations of a countably infinite set. Let$K[S]$be the group algebra ofSover a fieldKof characteristic 0. According to a theorem of Formanek and Lawrence,$K[S]$satisfies the ascending chain condition for two-sided ideals. We study the reverse mathematics of this theorem, proving its equivalence over$RC{A_0}$(or even over$RCA_0^{\rm{*}}$) to the statement that${\omega ^\omega }$is well ordered. Our equivalence proof proceeds via the statement that the Young diagrams form a well partial ordering.

1987 ◽  
Vol 52 (3) ◽  
pp. 817-818 ◽  
Author(s):  
Randall Dougherty

A subset of the Cantor space ω2 is called monotone iff it is closed upward under the partial ordering ≤ defined by x ≤ y iff x(n) ≤ y(n) for all n ∈ ω. A set is -positive (-positive) iff it is monotone and -positive set is a countable union of -positive sets; a -positive set is a countable intersection of -positive sets. (See Cenzer [2] for background information on these concepts.) It is clear that any -positive set is and monotone; the converse holds for n ≤ 2 [2] and was conjectured by Dyck to hold for greater n. In this note, we will disprove this conjecture by giving examples of monotone sets (for n ≥ 3) which are not even -positive.First we note a few isomorphisms. The space (ω2, ≤) is isomorphic to the space (ω2 ≥), so instead of monotone and positive sets we may construct hereditary and negative sets (the analogous notions with “closed upward” replaced by “closed downward”). Also, (ω2, ≤) is isomorphic to ((ω), ⊆), where denotes the power set operator, or to ((S), ⊆) for any countably infinite set S.In order to remove extraneous notation from the proofs, we state the results in an abstract form (whose generality is deceptive).


1971 ◽  
Vol 14 (3) ◽  
pp. 443-444 ◽  
Author(s):  
Kwangil Koh ◽  
A. C. Mewborn

If I is a right ideal of a ring R, I is said to be an annihilator right ideal provided that there is a subset S in R such thatI is said to be injective if it is injective as a submodule of the right regular R-module RR. The purpose of this note is to prove that a prime ring R (not necessarily with 1) which satisfies the ascending chain condition on annihilator right ideals is a simple ring with descending chain condition on one sided ideals if R contains a nonzero right ideal which is injective.


1974 ◽  
Vol 26 (3) ◽  
pp. 608-620 ◽  
Author(s):  
Jeremy Wilson

Let F be the group freely generated by the countably infinite set X = {x1, x2, . . . ,xi, . . . }. Let w(x1, x2, . . . , xn) be a reduced word representing an element of F and let G be an arbitrary group. Then V(w, G) will denote the setwhose elements will be called values of w in G. The subgroup of G generated by V(w, G) will be called the verbal subgroup of G with respect to w and be denoted by w(G).


1972 ◽  
Vol 13 (4) ◽  
pp. 433-446 ◽  
Author(s):  
T. W. Atterton

Let B be an associative ring with identity, A a subring of B containing the identity of B. If B is commutative then it is customary to define an element b of B to be integral over A if it satisties an equation of the form for some a1, a2, …, an A. This definition does not generalize readily to the case when B is non-commutative. Van der Waerden ([11], p. 75) defines b ∈ B to be integral over A if all powers of b belong to a finite A-module. This definition is quite satisfactory when A satisfies the ascending chain condition for left ideals, but in the general case this type of integrity is not necessarily transitive, even when B is commutative. Krull [6] calls an element b ∈ B which satisfies the above condition almost integral over A (but he only considers the commutative case). The subset Ā of B consisting of all almost integral elements over A is called the complete integral closure of A in B. If Ā = A, A is said to be completely integrally closed in B. More recently (in [3]), Gilmer and Heinzer (see also Bourbaki, [1]) have discussed these properties in the commutative case and have shown that the complete integral closure of A in B need not be completely integrally closed in B. If B is not commutative, the set A of elements of B almost integral over A, may not even form a ring. In [5] p. 122, Jacobson uses a definition equivalent to Van der Waerden's for the non-commutative case but the definition applies only for a very restricted class of rings.


1968 ◽  
Vol 9 (1) ◽  
pp. 46-66 ◽  
Author(s):  
W. D. Munn

Let S be a semigroup whose set E of idempotents is non-empty. We define a partial ordering ≧ on E by the rule that e ≧ f and only if ef = f = fe. If E = {ei: i∈ N}, where N denotes the set of all non-negative integers, and if the elements of E form the chainthen S is called an ω-semigroup.


1949 ◽  
Vol 1 (2) ◽  
pp. 125-152 ◽  
Author(s):  
Ernst Snapper

The purpose of this paper is to investigate completely indecomposable modules. A completely indecomposable module is an additive abelian group with a ring A as operator domain, where the following four conditions are satisfied.1-1. A is a commutative ring and has a unit element which is unit operator for .1-2. The submodules of satisfy the ascending chain condition. (Submodule will always mean invariant submodule.)


Author(s):  
Joaquín Moraga

Abstract In this article, we prove a local implication of boundedness of Fano varieties. More precisely, we prove that $d$ -dimensional $a$ -log canonical singularities with standard coefficients, which admit an $\epsilon$ -plt blow-up, have minimal log discrepancies belonging to a finite set which only depends on $d,\,a$ and $\epsilon$ . This result gives a natural geometric stratification of the possible mld's in a fixed dimension by finite sets. As an application, we prove the ascending chain condition for minimal log discrepancies of exceptional singularities. We also introduce an invariant for klt singularities related to the total discrepancy of Kollár components.


1970 ◽  
Vol 22 (4) ◽  
pp. 839-846 ◽  
Author(s):  
Robert V. Moody

In [2], we considered a class of Lie algebras generalizing the classical simple Lie algebras. Using a field Φ of characteristic zero and a square matrix (Aij) of integers with the properties (1) Aii = 2, (2) Aij ≦ 0 if i ≠ j, (3) Aij = 0 if and only if Ajt = 0, and (4) is symmetric for some appropriate non-zero rational a Lie algebra E = E((Aij)) over Φ can be constructed, together with the usual accoutrements: a root system, invariant bilinear form, and Weyl group.For indecomposable (A ij), E is simple except when (Aij) is singular and removal of any row and corresponding column of (Aij) leaves a Cartan matrix. The non-simple Es, Euclidean Lie algebras, were our object of study in [3] as well as in the present paper. They are infinite-dimensional, have ascending chain condition on ideals, and proper ideals are of finite codimension.


1970 ◽  
Vol 13 (3) ◽  
pp. 389-390
Author(s):  
J. A. J. Matthews ◽  
G. de B. Robinson

As has long been known, the irreducible tensor representations of GL(d) of rank n may be labeled by means of the irreducible representations of Sn, i.e., by means of the Young diagrams [λ], where λ1 + λ2 + … λr = n. We denote such a tensor representation by 〈λ〉. Using Young's raising operator Rij we can write [1, p. 42]1.1where the dot denotes the inducing process. For example, [3] . [2] is that representation of S5 induced by the identity representation of its subgroup S3 × S2.


2012 ◽  
Vol 49 (3) ◽  
pp. 366-389 ◽  
Author(s):  
Edmond Lee

The smallest monoid containing a 2-testable semigroup is defined to be a 2-testable monoid. The well-known Brandt monoid B21 of order six is an example of a 2-testable monoid. The finite basis problem for 2-testable monoids was recently addressed and solved. The present article continues with the investigation by describing all monoid varieties generated by 2-testable monoids. It is shown that there are 28 such varieties, all of which are finitely generated and precisely 19 of which are finitely based. As a comparison, the sub-variety lattice of the monoid variety generated by the monoid B21 is examined. This lattice has infinite width, satisfies neither the ascending chain condition nor the descending chain condition, and contains non-finitely generated varieties.


Sign in / Sign up

Export Citation Format

Share Document