A lower bound for the prime counting function

2011 ◽  
Vol 95 (534) ◽  
pp. 433-436
Author(s):  
Daniel Shiu ◽  
Peter Shiu

Let π (x) count the primes p ≤ x, where x is a large real number. Euclid proved that there are infinitely many primes, so that π (x) → ∞ as x → ∞; in fact his famous argument ([1: Section 2.2]) can be used to show thatThere was no further progress on the problem of the distribution of primes until Euler developed various tools for the purpose; in particular he proved in 1737 [1: Theorem 427] that

Author(s):  
H. Davenport

Let L1, L2, L3 be three homogeneous linear forms in u, v, w with real coefficients and determinant 1. Let M denote the lower bound offor integral values of u, v, w, not all zero. I proved a few years ago (1) thatmore precisely, thatexcept when L1, L2, L3 are of a special type, in which case If we denote by θ, ø, ψ the roots of the cubic equation t3+t2-2t-1 = 0, the special linear forms are equivalent, by an integral unimodular linear transformation, to(in any order), where λ1,λ2,λ3 are real number whose product is In this case, L1L2L3|λ1λ2λ3 is a non-zero integer, and the minimum of its absolute value is 1, giving


2016 ◽  
Vol 100 (548) ◽  
pp. 203-212
Author(s):  
Peter Shiu

The behaviour of the divisor function d (n) is rather tricky. For a prime p, we have d(p) = 2, but if n is the product of the first k primes then, by Chebyshev's estimate for the prime counting function [1, Theorem 414], we have so thatfor such n then, d (n) is ‘unusually large’ — it can exceed any fixed power of log n, for example.In [2] Jameson gives, amongst other things, a derivation of Dirichlet's theorem, which shows that the mean-value of the divisor function in an interval containing n is log n. However, the result is somewhat deceptive because, for most n, the value of d (n) is substantially smaller than log n.


2011 ◽  
Vol 54 (3) ◽  
pp. 685-693
Author(s):  
P. C. Fenton

AbstractFor functions u, subharmonic in the plane, letand let N(r,u) be the integrated counting function. Suppose that $\mathcal{N}\colon[0,\infty)\rightarrow\mathbb{R}$ is a non-negative non-decreasing convex function of log r for which $\mathcal{N}(r)=0$ for all small r and $\limsup_{r\to\infty}\log\mathcal{N}(r)/\4\log r=\rho$, where 1 < ρ < 2, and defineA sharp upper bound is obtained for $\liminf_{r\to\infty}\mathcal{B}(r,\mathcal{N})/\mathcal{N}(r)$ and a sharp lower bound is obtained for $\limsup_{r\to\infty}\mathcal{A}(r,\mathcal{N})/\mathcal{N}(r)$.


Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


2011 ◽  
Vol 32 (2) ◽  
pp. 785-807 ◽  
Author(s):  
ELON LINDENSTRAUSS ◽  
URI SHAPIRA

AbstractWe give new classes of examples of orbits of the diagonal group in the space of unit volume lattices in ℝd for d≥3 with nice (homogeneous) orbit closures, as well as examples of orbits with explicitly computable but irregular orbit closures. We give Diophantine applications to the former; for instance, we show that, for all γ,δ∈ℝ, where 〈c〉 denotes the distance of a real number c to the integers.


1966 ◽  
Vol 18 ◽  
pp. 1091-1094 ◽  
Author(s):  
Clark T. Benson

In (3) Tutte showed that the order of a regular graph of degree d and even girth g > 4 is greater than or equal toHere the girth of a graph is the length of the shortest circuit. It was shown in (2) that this lower bound cannot be attained for regular graphs of degree > 2 for g ≠ 6, 8, or 12. When this lower bound is attained, the graph is called minimal. In a group-theoretic setting a similar situation arose and it was noticed by Gleason that minimal regular graphs of girth 12 could be constructed from certain groups. Here we construct these graphs making only incidental use of group theory. Also we give what is believed to be an easier construction of minimal regular graphs of girth 8 than is given in (2). These results are contained in the following two theorems.


2014 ◽  
Vol 24 (4) ◽  
pp. 658-679 ◽  
Author(s):  
JÓZSEF BALOGH ◽  
PING HU ◽  
BERNARD LIDICKÝ ◽  
OLEG PIKHURKO ◽  
BALÁZS UDVARI ◽  
...  

We show that for every sufficiently largen, the number of monotone subsequences of length four in a permutation onnpoints is at least\begin{equation*} \binom{\lfloor{n/3}\rfloor}{4} + \binom{\lfloor{(n+1)/3}\rfloor}{4} + \binom{\lfloor{(n+2)/3}\rfloor}{4}. \end{equation*}Furthermore, we characterize all permutations on [n] that attain this lower bound. The proof uses the flag algebra framework together with some additional stability arguments. This problem is equivalent to some specific type of edge colourings of complete graphs with two colours, where the number of monochromaticK4is minimized. We show that all the extremal colourings must contain monochromaticK4only in one of the two colours. This translates back to permutations, where all the monotone subsequences of length four are all either increasing, or decreasing only.


2009 ◽  
Vol 51 (2) ◽  
pp. 243-252
Author(s):  
ARTŪRAS DUBICKAS

AbstractLetx0<x1<x2< ⋅⋅⋅ be an increasing sequence of positive integers given by the formulaxn=⌊βxn−1+ γ⌋ forn=1, 2, 3, . . ., where β > 1 and γ are real numbers andx0is a positive integer. We describe the conditions on integersbd, . . .,b0, not all zero, and on a real number β > 1 under which the sequence of integerswn=bdxn+d+ ⋅⋅⋅ +b0xn,n=0, 1, 2, . . ., is bounded by a constant independent ofn. The conditions under which this sequence can be ultimately periodic are also described. Finally, we prove a lower bound on the complexity function of the sequenceqxn+1−pxn∈ {0, 1, . . .,q−1},n=0, 1, 2, . . ., wherex0is a positive integer,p>q> 1 are coprime integers andxn=⌈pxn−1/q⌉ forn=1, 2, 3, . . . A similar speculative result concerning the complexity of the sequence of alternatives (F:x↦x/2 orS:x↦(3x+1)/2) in the 3x+1 problem is also given.


Author(s):  
Edward Tutaj

Abstract The convex hull of the subgraph of the prime counting function x → π(x) is a convex set, bounded from above by a graph of some piecewise affine function x → (x). The vertices of this function form an infinite sequence of points $({e_k},\pi ({e_k}))_1^\infty $ . The elements of the sequence (ek)1∞ shall be called the extremal prime numbers. In this paper we present some observations about the sequence (ek)1∞ and we formulate a number of questions inspired by the numerical data. We prove also two – it seems – interesting results. First states that if the Riemann Hypothesis is true, then ${{{e_k} + 1} \over {{e_k}}} = 1$ . The second, also depending on Riemann Hypothesis, describes the order of magnitude of the differences between consecutive extremal prime numbers.


1970 ◽  
Vol 22 (3) ◽  
pp. 569-581 ◽  
Author(s):  
S. K. Thomason

In this paper we shall prove that every finite lattice is isomorphic to a sublattice of the degrees of unsolvability, and that every one of a certain class of finite lattices is isomorphic to an initial segment of degrees.Acknowledgment. I am grateful to Ralph McKenzie for his assistance in matters of lattice theory.1. Representation of lattices. The equivalence lattice of the set S consists of all equivalence relations on S, ordered by setting θ ≦ θ’ if for all a and b in S, a θ b ⇒ a θ’ b. The least upper bound and greatest lower bound in are given by the ⋃ and ⋂ operations:


Sign in / Sign up

Export Citation Format

Share Document