prime counting function
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 17)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 17 (2) ◽  
pp. 5-18
Author(s):  
V. Ďuriš ◽  
T. Šumný ◽  
T. Lengyelfalusy

Abstract Skewes’ number was discovered in 1933 by South African mathematician Stanley Skewes as upper bound for the first sign change of the difference π (x) − li(x). Whether a Skewes’ number is an integer is an open problem of Number Theory. Assuming Schanuel’s conjecture, it can be shown that Skewes’ number is transcendental. In our paper we have chosen a different approach to prove Skewes’ number is an integer, using lattice points and tangent line. In the paper we acquaint the reader also with prime numbers and their use in RSA coding, we present the primary algorithms Lehmann test and Rabin-Miller test for determining the prime numbers, we introduce the Prime Number Theorem and define the prime-counting function and logarithmic integral function and show their relation.


2021 ◽  
Vol 27 (4) ◽  
pp. 25-31
Author(s):  
Sadani Idir ◽  

Our objective in this paper is to study a particular set of prime numbers, namely \ left \ {p \ in \ mathbb {P} \ \ text {and} \ \ pi (p) \ notin \ mathbb {P} \ right \} \ !.As a consequence, estimations of the form \ sum {f (p)}with p being prime belonging to this set are derived.


2021 ◽  
Vol 27 (4) ◽  
pp. 149-153
Author(s):  
József Sándor ◽  

We study certain inequalities for the prime counting function π(x). Particularly, a new proof and a refinement of an inequality from [1] is provided.


Author(s):  
Jan Feliksiak

This research paper aims to explicate the complex issue of the Riemann's Hypothesis and ultimately presents its elementary proof. The method implements one of the binomial coefficients, to demonstrate the maximal prime gaps bound. Maximal prime gaps bound constitutes a comprehensive improvement over the Bertrand's result, and becomes one of the key elements of the theory. Subsequently, implementing the theory of the primorial function and its error bounds, an improved version of the Gauss' offset logarithmic integral is developed. This integral serves as a Supremum bound of the prime counting function Pi(n). Due to its very high precision, it permits to verify the relationship between the prime counting function Pi(n) and the offset logarithmic integral of Carl Gauss. The collective mathematical theory, via the Niels F. Helge von Koch equation, enables to prove the RIemann's Hypothesis conclusively.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1224
Author(s):  
Vito Barbarani

This work is divided into two parts. In the first one, the combinatorics of a new class of randomly generated objects, exhibiting the same properties as the distribution of prime numbers, is solved and the probability distribution of the combinatorial counterpart of the n-th prime number is derived together with an estimate of the prime-counting function π(x). A proposition equivalent to the Prime Number Theorem (PNT) is proved to hold, while the equivalent of the Riemann Hypothesis (RH) is proved to be false with probability 1 (w.p. 1) for this model. Many identities involving Stirling numbers of the second kind and harmonic numbers are found, some of which appear to be new. The second part is dedicated to generalizing the model to investigate the conditions enabling both PNT and RH. A model representing a general class of random integer sequences is found, for which RH holds w.p. 1. The prediction of the number of consecutive prime pairs as a function of the gap d, is derived from this class of models and the results are in agreement with empirical data for large gaps. A heuristic version of the model, directly related to the sequence of primes, is discussed, and new integral lower and upper bounds of π(x) are found.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mehdi Hassani

Abstract In this paper we investigate Ramanujan’s inequality concerning the prime counting function, asserting that π ( x 2 ) < e x log x π ( x e ) \pi \left( {{x^2}} \right) < {{ex} \over {\log x}}\pi \left( {{x \over e}} \right) for x sufficiently large. First, we study its sharpness by giving full asymptotic expansions of its left and right hand sides expressions. Then, we discuss the structure of Ramanujan’s inequality, by replacing the factor x log x {x \over {\log x}} on its right hand side by the factor x log x - h {x \over {\log x - h}} for a given h, and by replacing the numerical factor e by a given positive α. Finally, we introduce and study inequalities analogous to Ramanujan’s inequality.


Author(s):  
Vito Barbarani

This work is divided into two parts. In the first one the combinatorics of a new class of randomly generated objects, exhibiting the same properties as the distribution of prime numbers, is solved and the probability distribution of the combinatorial counterpart of the n-th prime number is derived, together with an estimate of the prime-counting function &pi;(x). A proposition equivalent to the Prime Number Theorem (PNT) is proved to hold, while the equivalent of the Riemann Hypothesis (RH) is proved to be false with probability 1 (w.p. 1) for this model. Many identities involving Stirling numbers of the second kind and harmonic numbers are found, some of which appear to be new. The second part is dedicated to generalizing the model to investigate the conditions enabling both PNT and RH. A model representing a general class of random integer sequences is found, for which RH holds w.p. 1. The prediction of the number of consecutive prime pairs, as a function of the gap d, is derived from this class of models and the results are in agreement with empirical data for large gaps. A heuristic version of the model, directly related to the sequence of primes, is discussed and new integral lower and upper bounds of &pi;(x) are found.


2021 ◽  
Author(s):  
Carlos Mañas Bastidas

An explicit formula which characterizes the pairs of integers that are relatively prime (that is, without common prime factors) is obtained here. It is deduced using sine functions and doesn’t require the knowledge of the prime factors of the arguments. From it, other explicit formulas are derived for the Euler’s Totient function and the Prime Counting function .


Sign in / Sign up

Export Citation Format

Share Document