scholarly journals The generalized divisor problem and the Riemann hypothesis

1991 ◽  
Vol 122 ◽  
pp. 149-159 ◽  
Author(s):  
Hideki Nakaya

Let dz(n) be a multiplicative function defined bywhere s = σ + it, z is a. complex number, and ζ(s) is the Riemann zeta function. Here ζz(s) = exp(z log ζ(s)) and let log ζ(s) take real values for real s > 1. We note that if z is a natural number dz(n) coincides with the divisor function appearing in the Dirichlet-Piltz divisor problem, and d-1(n) with the Möbious function.

2021 ◽  
Author(s):  
Frank Vega

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems and it is one of the Clay Mathematics Institute's Millennium Prize Problems. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)< e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n> 5040$, where $\sigma(x)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1} > e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}> 2$, where $\theta(x)$ is the Chebyshev function. Using both inequalities, we show that the Riemann hypothesis is most likely true.


2021 ◽  
Author(s):  
Frank Vega

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems. Besides, it is one of the Clay Mathematics Institute's Millennium Prize Problems. This problem has remained unsolved for many years. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)< e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n>5040$, where $\sigma(x)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1}>e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}>2$, where $\theta(x)$ is the Chebyshev function. Using both inequalities, we show that the Riemann hypothesis is true.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2410
Author(s):  
Janyarak Tongsomporn ◽  
Saeree Wananiyakul ◽  
Jörn Steuding

In this paper, we prove an asymptotic formula for the sum of the values of the periodic zeta-function at the nontrivial zeros of the Riemann zeta-function (up to some height) which are symmetrical on the real line and the critical line. This is an extension of the previous results due to Garunkštis, Kalpokas, and, more recently, Sowa. Whereas Sowa’s approach was assuming the yet unproved Riemann hypothesis, our result holds unconditionally.


2020 ◽  
Vol 22 (12) ◽  
pp. 3953-3980
Author(s):  
Sandro Bettin ◽  
Hung Bui ◽  
Xiannan Li ◽  
Maksym Radziwiłł

2008 ◽  
Vol 83 (97) ◽  
pp. 71-86
Author(s):  
Yifan Yang

Let ?(T) and E(T) be the error terms in the classical Dirichlet divisor problem and in the asymptotic formula for the mean square of the Riemann zeta function in the critical strip, respectively. We show that ?(T) and E(T) are asymptotic integral transforms of each other. We then use this integral representation of ?(T) to give a new proof of a result of M. Jutila.


2021 ◽  
Author(s):  
Frank Vega

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems. Besides, it is one of the Clay Mathematics Institute's Millennium Prize Problems. This problem has remained unsolved for many years. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)< e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n>5040$, where $\sigma(x)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1}>e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}>2$, where $\theta(x)$ is the Chebyshev function. Using both inequalities, we show that the Riemann hypothesis is true.


Sign in / Sign up

Export Citation Format

Share Document