scholarly journals Ample Vector Bundles on Curves

1971 ◽  
Vol 43 ◽  
pp. 73-89 ◽  
Author(s):  
Robin Hartshorne

In our earlier paper [4] we developed the basic sheaftheoretic and cohomological properties of ample vector bundles. These generalize the corresponding well-known results for ample line bundles. The numerical properties of ample vector bundles are still poorly understood. For line bundles, Nakai’s criterion characterizes ampleness by the positivity of certain intersection numbers of the associated divisor with subvarieties of the ambient variety. For vector bundles, one would like to characterize ampleness by the numerical positivity of the Chern classes of the bundle (and perhaps of its restrictions to subvarieties and their quotients). Such a result, like the Riemann-Roch theorem, giving an equivalence between cohomological and numerical properties of a vector bundle, may be quite subtle. Some progress has been made by Gieseker [2], by Kleiman [8], and in the analytic case, by Griffiths [3].

1971 ◽  
Vol 43 ◽  
pp. 91-116 ◽  
Author(s):  
David Gieseker

In [9], Hartshorne extended the concept of ampleness from line bundles to vector bundles. At that time, he conjectured that the appropriate Chern classes of an ample vector bundle were positive, and it was hoped that there would be some criterion for ampleness of vector bundles similar to Nakai’s criterion for line bundles. In the same paper, Hartshorne also introduced the notion of p-ample when the ground field had characteristic p, proved that a p-ample bundle was ample and asked if the converse were true.


2019 ◽  
Vol 7 ◽  
Author(s):  
A. ASOK ◽  
J. FASEL ◽  
M. J. HOPKINS

Suppose $X$ is a smooth complex algebraic variety. A necessary condition for a complex topological vector bundle on $X$ (viewed as a complex manifold) to be algebraic is that all Chern classes must be algebraic cohomology classes, that is, lie in the image of the cycle class map. We analyze the question of whether algebraicity of Chern classes is sufficient to guarantee algebraizability of complex topological vector bundles. For affine varieties of dimension ${\leqslant}3$, it is known that algebraicity of Chern classes of a vector bundle guarantees algebraizability of the vector bundle. In contrast, we show in dimension ${\geqslant}4$ that algebraicity of Chern classes is insufficient to guarantee algebraizability of vector bundles. To do this, we construct a new obstruction to algebraizability using Steenrod operations on Chow groups. By means of an explicit example, we observe that our obstruction is nontrivial in general.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Svetlana Ermakova

AbstractIn this article we establish an analogue of the Barth-Van de Ven-Tyurin-Sato theorem.We prove that a finite rank vector bundle on a complete intersection of finite codimension in a linear ind-Grassmannian is isomorphic to a direct sum of line bundles.


1993 ◽  
Vol 130 ◽  
pp. 19-23 ◽  
Author(s):  
E. Ballico

Let X be an algebraic complex projective surface equipped with the euclidean topology and E a rank 2 topological vector bundle on X. It is a classical theorem of Wu ([Wu]) that E is uniquely determined by its topological Chern classes . Viceversa, again a classical theorem of Wu ([Wu]) states that every pair (a, b) ∈ (H (X, Z), Z) arises as topological Chern classes of a rank 2 topological vector bundle. For these results the existence of an algebraic structure on X was not important; for instance it would have been sufficient to have on X a holomorphic structure. In [Sch] it was proved that for algebraic X any such topological vector bundle on X has a holomorphic structure (or, equivalently by GAGA an algebraic structure) if its determinant line bundle has a holomorphic structure. It came as a surprise when Elencwajg and Forster ([EF]) showed that sometimes this was not true if we do not assume that X has an algebraic structure but only a holomorphic one (even for some two dimensional tori (see also [BL], [BF], or [T])).


1977 ◽  
Vol 66 ◽  
pp. 77-88
Author(s):  
Toshio Hosoh

In the previous paper [1], we showed that the set of simple vector bundles of rank 2 on a rational surface with fixed Chern classes is bounded and we gave a sufficient condition for an H-stable vector bundle of rank 2 on a rational surface to be ample. In this paper, we shall extend the results of [1] to the case of higher rank.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
L. Roa-Leguizamón ◽  
H. Torres-López ◽  
A. G. Zamora

Abstract We extend the concept of the Segre invariant to vector bundles on a surface X. For X = ℙ2 we determine what numbers can appear as the Segre invariant of a rank 2 vector bundle with given Chern classes. The irreducibility of strata with fixed Segre invariant is proved and their dimensions are computed. Finally, we present applications to the Brill–Noether Theory for rank 2 vector bundles on ℙ2.


2001 ◽  
Vol 12 (08) ◽  
pp. 927-942
Author(s):  
KIMIKO YAMADA

Let MH(c1, c2) be a coarse moduli scheme parameterizing all rank-two H-μ-stable vector bundles with Chern classes (c1, c2) on a smooth projective surface X over an algebraically closed field. For fixed two ample line bundles H and H′, it is known that if c2 is greater than some constant p(X, H, H′) depending on H and H′ then MH(c1, c2) and MH′(c1, c2) are birationally equivalent. In this paper we show that this constant p(X, H, H′) generally does depends on the choice of H and H′. More precisely, we give some example of surface (and c1) on which, for any number K, there exists an integer c2 with c2≥K such that sup H: ample dim MH(c1, c2) = + ∞. This result is available also for normal surfaces.


1985 ◽  
Vol 97 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Constantin BẮnicẮ ◽  
Mihai Putinar

It is known [14] that every topological complex vector bundle on a smooth rational surface admits an algebraic structure. In [10] one constructs algebraic vector bundles of rank 2 on with arbitrary Chern classes c1, c2 subject to the necessary topological condition c1 c2 = 0 (mod 2). However, in dimensions greater than 2 the Chern classes don't determine the topological type of a vector bundle. In [2] one classifies the topological complex vector bundles of rank 2 on and one proves that any such bundle admits an algebraic structure.


2013 ◽  
Vol 112 (1) ◽  
pp. 61
Author(s):  
George H. Hitching

Let $E$ and $F$ be vector bundles over a complex projective smooth curve $X$, and suppose that $0 \to E \to W \to F \to 0$ is a nontrivial extension. Let $G \subseteq F$ be a subbundle and $D$ an effective divisor on $X$. We give a criterion for the subsheaf $G(-D) \subset F$ to lift to $W$, in terms of the geometry of a scroll in the extension space ${\mathbf{P}} H^{1}(X, \mathrm{Hom}(F, E))$. We use this criterion to describe the tangent cone to the generalised theta divisor on the moduli space of semistable bundles of rank $r$ and slope $g-1$ over $X$, at a stable point. This gives a generalisation of a case of the Riemann-Kempf singularity theorem for line bundles over $X$. In the same vein, we generalise the geometric Riemann-Roch theorem to vector bundles of slope $g-1$ and arbitrary rank.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Soheyla Feyzbakhsh ◽  
Chunyi Li

AbstractLet (X, H) be a polarized K3 surface with $$\mathrm {Pic}(X) = \mathbb {Z}H$$ Pic ( X ) = Z H , and let $$C\in |H|$$ C ∈ | H | be a smooth curve of genus g. We give an upper bound on the dimension of global sections of a semistable vector bundle on C. This allows us to compute the higher rank Clifford indices of C with high genus. In particular, when $$g\ge r^2\ge 4$$ g ≥ r 2 ≥ 4 , the rank r Clifford index of C can be computed by the restriction of Lazarsfeld–Mukai bundles on X corresponding to line bundles on the curve C. This is a generalization of the result by Green and Lazarsfeld for curves on K3 surfaces to higher rank vector bundles. We also apply the same method to the projective plane and show that the rank r Clifford index of a degree $$d(\ge 5)$$ d ( ≥ 5 ) smooth plane curve is $$d-4$$ d - 4 , which is the same as the Clifford index of the curve.


Sign in / Sign up

Export Citation Format

Share Document