scholarly journals Banach spaces of bounded solutions of Δu = Pu (P ≥ 0) on hyperbolic riemann surfaces

1974 ◽  
Vol 53 ◽  
pp. 141-155 ◽  
Author(s):  
Mitsuru Nakai

Consider a nonnegative Hölder continuous 2-form P(z)dxdy on a hyperbolic Riemann surface R (z = x + iy). We denote by PB(R) the Banach space of solutions of the equation Δu = Pu on R with finite supremum norms. We are interested in the question how the Banach space structure of PB(R) depends on P. Precisely we consider two such 2-forms P and Q on R and compare PB(R) and QB(R). If there exists a bijective linear isometry T of PB(R) to QB(R), then we say that PB(R) and QB(R) are isomorphic.

1998 ◽  
Vol 50 (3) ◽  
pp. 449-464 ◽  
Author(s):  
Rauno Aulaskari ◽  
Yuzan He ◽  
Juha Ristioja ◽  
Ruhan Zhao

AbstractWe study the function spaces Qp(R) defined on a Riemann surface R, which were earlier introduced in the unit disk of the complex plane. The nesting property Qp(R) ⊆Qq(R) for 0 < p < q < ∞ is shown in case of arbitrary hyperbolic Riemann surfaces. Further, it is proved that the classical Dirichlet space AD(R) ⊆ Qp(R) for any p, 0 < p < ∞, thus sharpening T. Metzger's well-known result AD(R) ⊆ BMOA(R). Also the first author's result AD(R) ⊆ VMOA(R) for a regular Riemann surface R is sharpened by showing that, in fact, AD(R) ⊆ Qp,0(R) for all p, 0 < p < ∞. The relationships between Qp(R) and various generalizations of the Bloch space on R are considered. Finally we show that Qp(R) is a Banach space for 0 < p < ∞.


Author(s):  
Tien-Cuong Dinh ◽  
Viet-Anh Nguyen ◽  
Nessim Sibony

This chapter introduces a notion of entropy for possibly singular hyperbolic laminations by Riemann surfaces. It also studies the transverse regularity of the Poincaré metric and the finiteness of the entropy. The chapter first focuses on compact laminations, which are transversally smooth, before turning to the case of singular foliations, showing how the Poincaré metric on leaves is transversally Hölder continuous. In addition, the chapter considers the problem in the proof that the entropy is finite for singular foliations is quite delicate and requires a careful analysis of the dynamics around the singularities. Finally, the chapter discusses a notion of metric entropy for harmonic probability measures and gives some open questions.


Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


1963 ◽  
Vol 22 ◽  
pp. 211-217 ◽  
Author(s):  
Nobushige Toda ◽  
Kikuji Matsumoto

Some years ago, Kuramochi gave in his paper [5] a very interesting theorem, which can be stated as follows.THEOREM OF KURAMOCHI. Let R be a hyperbolic Riemann surface of the class Of OHR(OHD,resp.). Then, for any compact subset K of R such that R—K is connected, R—K as an open Riemann surface belongs to the class 0AB(OAD resp.).


2020 ◽  
Vol 2020 (764) ◽  
pp. 287-304
Author(s):  
Hyungryul Baik ◽  
Farbod Shokrieh ◽  
Chenxi Wu

AbstractWe prove a generalized version of Kazhdan’s theorem for canonical forms on Riemann surfaces. In the classical version, one starts with an ascending sequence {\{S_{n}\rightarrow S\}} of finite Galois covers of a hyperbolic Riemann surface S, converging to the universal cover. The theorem states that the sequence of forms on S inherited from the canonical forms on {S_{n}}’s converges uniformly to (a multiple of) the hyperbolic form. We prove a generalized version of this theorem, where the universal cover is replaced with any infinite Galois cover. Along the way, we also prove a Gauss–Bonnet-type theorem in the context of arbitrary infinite Galois covers.


1969 ◽  
Vol 34 ◽  
pp. 77-87
Author(s):  
Shinji Yamashitad

In this note we shall denote by R a hyperbolic Riemann surface. Let HP′(R) be the totality of harmonic functions u on R such that every subharmonic function | u | has a harmonic majorant on R. The class HP′(R) forms a vector lattice under the lattice operations:


1979 ◽  
Vol 31 (5) ◽  
pp. 1072-1076
Author(s):  
Mikio Niimura

The classical uniqueness theorems of Riesz and Koebe show an important characteristic of boundary behavior of analytic functions in the unit disc. The purpose of this note is to discuss these uniqueness theorems on hyperbolic Riemann surfaces. It will be necessary to give additional hypotheses because Riemann surfaces can be very nasty. So, in this note the Wiener compactification will be used as ideal boundary of Riemann surfaces. The Theorem, Corollaries 1, 2 and 3 are of Riesz type, Riesz-Nevanlinna type, Koebe type and Koebe-Nevanlinna type respectively. Corollaries 4 and 5 are general forms of Corollaries 2 and 3 respectively.Let f be a mapping from an open Riemann surface R into a Riemann surface R′.


1989 ◽  
Vol 9 (3) ◽  
pp. 587-604 ◽  
Author(s):  
Howard Weiss

AbstractThurston and Kerckhoff have shown that the space of measured geodesic laminations on a hyperbolic Riemann surface serves as a non-linear model of the tangent space to Teichmüller space at the surface. In this paper we show that the natural map between these manifolds has stronger than Hölder continuous regularity.


2000 ◽  
Vol 23 (5) ◽  
pp. 361-365 ◽  
Author(s):  
Gaston Mandata N'Guerekata

We discuss the conditions under which bounded solutions of the evolution equationx′(t)=Ax(t)+f(t)in a Banach space are almost automorphic wheneverf(t)is almost automorphic andAgenerates aC0-group of strongly continuous operators. We also give a result for asymptotically almost automorphic solutions for the more general case ofx′(t)=Ax(t)+f(t,x(t)).


Sign in / Sign up

Export Citation Format

Share Document