scholarly journals A prime decomposition symbol for a non-abelian central extension which is abelian over a bicyclic biquadratic field

1980 ◽  
Vol 79 ◽  
pp. 79-109 ◽  
Author(s):  
Yoshiomi Furuta

In a previous paper [6] we had some criteria for the prime decomposition in certain non-abelian extensions over the rational number field Q, and as its special case we had a reciprocity of the biquadratic residue symbol. The reciprocity was obtained by using a descent method of the prime decomposition for a central extension over Q which is abelian over a biquadratic field In the present paper we study on the case over a biquadratic field in general. We define a symbol [d1, d2, p] which expresses the decomposition law of a rational prime p in a central extension mentioned above.

2013 ◽  
Vol 21 (2) ◽  
pp. 115-125
Author(s):  
Yuichi Futa ◽  
Hiroyuki Okazaki ◽  
Daichi Mizushima ◽  
Yasunari Shidama

Summary Gaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rational number field and a quotient field of the Gaussian integer ring are isomorphic.


1988 ◽  
Vol 30 (2) ◽  
pp. 231-236
Author(s):  
Shigeaki Tsuyumine

Let K be a totally real algebraic number field of degree n > 1, and let OK be the maximal order. We denote by гk, the Hilbert modular group SL2(OK) associated with K. On the extent of the weight of an automorphy factor for гK, some restrictions are imposed, not as in the elliptic modular case. Maass [5] showed that the weight is integral for K = ℚ(√5). It was shown by Christian [1] that for any Hilbert modular group it is a rational number with the bounded denominator depending on the group.


2012 ◽  
Vol 08 (01) ◽  
pp. 175-188 ◽  
Author(s):  
ROB NOBLE

The weighted Delannoy numbers give a weighted count of lattice paths starting at the origin and using only minimal east, north and northeast steps. Full asymptotic expansions exist for various diagonals of the weighted Delannoy numbers. In the particular case of the central weighted Delannoy numbers, certain weights give rise to asymptotic coefficients that lie in a number field. In this paper we apply a generalization of a method of Stoll and Haible to obtain divisibility properties for the asymptotic coefficients in this case. We also provide a similar result for a special case of the diagonal with slope 2.


1979 ◽  
Vol 75 ◽  
pp. 121-131 ◽  
Author(s):  
Susumu Shirai

Let Q be the rational number field, K/Q be a maximal Abelian extension whose degree is some power of a prime l, and let f(K) be the conductor of K/Q; if l = 2, let K be complex, and if in addition f(K) ≡ 0 (mod 2), let f(K) ≡ 0 (mod 16). Denote by (K) the Geschlechtermodul of K over Q and by K̂ the maximal central l-extension of K/Q contained in the ray class field mod (K) of K. A. Fröhlich [1, Theorem 4] completely determined the Galois group of K̂ over Q in purely rational terms. The proof is based on [1, Theorem 3], though he did not write the proof in the case f(K) ≡ 0 (mod 16). Moreover he gave a classification theory of all class two extensions over Q whose degree is a power of l. Hence we know the set of fields of nilpotency class two over Q, because a finite nilpotent group is a direct product of all its Sylow subgroups. But the theory becomes cumbersome, and it is desirable to reconstruct a more elementary one.


1970 ◽  
Vol 40 ◽  
pp. 193-211 ◽  
Author(s):  
Tetsuya Asai

The purpose of this paper is to give the limit formula of the Kronecker’s type for a non-holomorphic Eisenstein series with respect to a Hubert modular group in the case of an arbitrary algebraic number field. Actually, we shall generalize the following result which is well-known as the first Kronecker’s limit formula. From our view-point, this classical case is corresponding to the case of the rational number field Q.


1966 ◽  
Vol 27 (1) ◽  
pp. 121-132
Author(s):  
Yoshiomi Furuta

Let k be an algebraic number field of finite degree, K be its normal extension of degree n, and ŝ be the set of those primes of K which have degree 1. Using this set s instead of the set of all primes of K, we define an s-restricted idèle of K by the same way as ordinary idèles. It is known by Bauer that the normal extension of an algebraic number field is determined by the set of all primes of the ground field which are decomposed completely in the extension field. This suggests that if we treat abelian extensions over K which are normal over k, the class field theory is expressed by means of the ŝ-restricted idèles (theorem 2). When K = k, ŝ is the set of all primes of K, and we have the ordinary class field theory.


1982 ◽  
Vol 88 ◽  
pp. 181-195 ◽  
Author(s):  
Tomoyoshi Ibukiyama

In this paper, we shall give explicit Z-basis of certain maximal orders of definite quaternion algebras over the rational number field Q (See Theorems below). We shall also give some remarks on symmetric maximal orders in Ponomarev [9] and Hashimoto [6] (Proposition 4.3). More precise contents are as follows. Let D be a division quaternion algebra over Q.


2020 ◽  
Vol 63 (2) ◽  
pp. 382-392
Author(s):  
Keping Huang

AbstractLet $f:X\rightarrow X$ be a quasi-finite endomorphism of an algebraic variety $X$ defined over a number field $K$ and fix an initial point $a\in X$. We consider a special case of the Dynamical Mordell–Lang Conjecture, where the subvariety $V$ contains only finitely many periodic points and does not contain any positive-dimensional periodic subvariety. We show that the set $\{n\in \mathbb{Z}_{{\geqslant}0}\mid f^{n}(a)\in V\}$ satisfies a strong gap principle.


1980 ◽  
Vol 77 ◽  
pp. 137-143 ◽  
Author(s):  
Yoshiyuki Kitaoka

In [1] ∼ [6] the following question was treated: Let k be a totally real Galois extension of the rational number field Q, O the maximal order of k and G a finite subgroup of GL(n, O) which is stable under the operation of G(k/Q). Then does G ⊂ GL(n, Z) hold?


Sign in / Sign up

Export Citation Format

Share Document