finite arithmetic
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 0)

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 263
Author(s):  
Yuri N. Lovyagin ◽  
Nikita Yu. Lovyagin

The standard elementary number theory is not a finite axiomatic system due to the presence of the induction axiom scheme. Absence of a finite axiomatic system is not an obstacle for most tasks, but may be considered as imperfect since the induction is strongly associated with the presence of set theory external to the axiomatic system. Also in the case of logic approach to the artificial intelligence problems presence of a finite number of basic axioms and states is important. Axiomatic hyperrational analysis is the axiomatic system of hyperrational number field. The properties of hyperrational numbers and functions allow them to be used to model real numbers and functions of classical elementary mathematical analysis. However hyperrational analysis is based on well-known non-finite hyperarithmetic axiomatics. In the article we present a new finite first-order arithmetic theory designed to be the basis of the axiomatic hyperrational analysis and, as a consequence, mathematical analysis in general as a basis for all mathematical application including AI problems. It is shown that this axiomatics meet the requirements, i.e., it could be used as the basis of an axiomatic hyperrational analysis. The article in effect completes the foundation of axiomatic hyperrational analysis without calling in an arithmetic extension, since in the framework of the presented theory infinite numbers arise without invoking any new constants. The proposed system describes a class of numbers in which infinite numbers exist as natural objects of the theory itself. We also do not appeal to any “enveloping” set theory.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1351
Author(s):  
Qingsong Mao ◽  
Huan Huang

Wu introduced the interval range of fuzzy sets. Based on this, he defined a kind of arithmetic of fuzzy sets using a gradual number and gradual sets. From the point of view of soft computing, this definition provides a new way of handling the arithmetic operations of fuzzy sets. The interval range is an important characterization of a fuzzy set. The interval range is also useful for analyses and applications of arithmetic. In this paper, we present general conclusions on crucial problems related to interval ranges of fuzzy sets induced by this arithmetic. These conclusions indicate that the corresponding conclusions in previous works should be modified: firstly, we give properties of the arithmetic and the composites of finite arithmetic. Then, we discuss the relationship between the domain of a gradual set and the range of its induced fuzzy set, and the relationship between the domain of a gradual set and the interval range of its induced fuzzy set. Based on the above results, we present the relationship between the intersection of the interval ranges of a group of fuzzy sets and the interval ranges of their resulting fuzzy sets obtained by compositions of finite arithmetic. Furthermore, we construct examples to show that even under conditions stronger than in previous work, there are still various possibilities in the relationship between the intersection of interval ranges of a group of fuzzy sets and the ranges of their resulted fuzzy sets, and there are still various possibilities in the relationship between the intersection of the interval ranges of a group of fuzzy sets and the interval ranges of their resulting fuzzy sets.


2021 ◽  
Vol 8 (3A) ◽  
Author(s):  
Daniel Artur Pinheiro Palma ◽  
Anna Leticia Barbosa De Souza ◽  
Amir Zacarias Mesquita

It has been a consensus in the Academy that, for a nation to grow and develop in economic terms, an adequate supply of power should be available to provide its industrial sector as well as the needs of its people. Brazil did in the past make the decision to use the power generated from a nuclear source in its power generation matrix. The country today has two nuclear power plants in operation, Angra I and Angra II, with a third plant currently under construction, Angra III. The Angra I facility is nearly 40 years old and, should this country not manage to extend its lease of life, it should be decommissioned and taken apart, as provisioned for in prevailing legislation. In order to face the decommissioning costs of a nuclear power generation facility a sizeable amount of financial resources should be available to implement the decommissioning plan the operator is required to submit to the regulatory body. As the expected operating life of a nuclear power plant is of 40 years, some extensions were added to it to see the facilities go through successive and different governments and economic plans. This work studies some of the economic and financial aspects that go into the decommissioning of the Angra I power plant, pursuant to the IAEA documents published on the subject, covering different scenarios for yearly interest and the manner of the deposits, such as those of an uniform series of deposits and those of a growing and finite arithmetic progression.


Author(s):  
Sid Ali Bousla

In this paper, we establish some nontrivial and effective upper bounds for the least common multiple of consecutive terms of a finite arithmetic progression. Precisely, we prove that for any two coprime positive integers [Formula: see text] and [Formula: see text], with [Formula: see text], we have [Formula: see text] where [Formula: see text]. If in addition [Formula: see text] is a prime number and [Formula: see text], then we prove that for any [Formula: see text], we have [Formula: see text], where [Formula: see text]. Finally, we apply those inequalities to estimate the arithmetic function [Formula: see text] defined by [Formula: see text] ([Formula: see text]), as well as some values of the generalized Chebyshev function [Formula: see text].


2019 ◽  
Vol 31 (02) ◽  
pp. 2050008
Author(s):  
Zong-Sheng Liu ◽  
Xin-Han Dong

Let [Formula: see text] be a prime and [Formula: see text] be a sequence of finite arithmetic digit sets in [Formula: see text] with [Formula: see text] uniformly bounded, and let [Formula: see text] be the discrete probability measure on the finite set [Formula: see text] with equal distribution. For [Formula: see text], the infinite Bernoulli convolution [Formula: see text] converges weakly to a Borel probability measure (Moran measure). In this paper, we study the existence of exponential orthonormal basis for [Formula: see text].


2017 ◽  
Vol 2019 (14) ◽  
pp. 4419-4430 ◽  
Author(s):  
Jonathan M Fraser ◽  
Kota Saito ◽  
Han Yu

AbstractWe provide estimates for the dimensions of sets in $\mathbb{R}$ which uniformly avoid finite arithmetic progressions (APs). More precisely, we say $F$ uniformly avoids APs of length $k \geq 3$ if there is an $\epsilon>0$ such that one cannot find an AP of length $k$ and gap length $\Delta>0$ inside the $\epsilon \Delta$ neighbourhood of $F$. Our main result is an explicit upper bound for the Assouad (and thus Hausdorff) dimension of such sets in terms of $k$ and $\epsilon$. In the other direction, we provide examples of sets which uniformly avoid APs of a given length but still have relatively large Hausdorff dimension. We also consider higher dimensional analogues of these problems, where APs are replaced with arithmetic patches lying in a hyperplane. As a consequence, we obtain a discretized version of a “reverse Kakeya problem:” we show that if the dimension of a set in $\mathbb{R}^d$ is sufficiently large, then it closely approximates APs in every direction.


2016 ◽  
Vol 31 ◽  
pp. 200-231
Author(s):  
Federico Poloni ◽  
Nataša Strabić

Lagrangian subspaces are linear subspaces that appear naturally in control theory applications, and especially in the context of algebraic Riccati equations. We introduce a class of semidefinite Lagrangian subspaces and show that these subspaces can be represented by a subset I ⊆ {1, 2, . . . , n} and a Hermitian matrix X ∈ C n×n with the property that the submatrix X II is negative semidefinite and the submatrix X I c I c is positive semidefinite. A matrix X with these definiteness properties is called I-semidefinite and it is a generalization of a quasidefinite matrix. Under mild hypotheses which hold true in most applications, the Lagrangian subspace associated to the stabilizing solution of an algebraic Riccati equation is semidefinite, and in addition we show that there is a bijection between Hamiltonian and symplectic pencils and semidefinite Lagrangian subspaces; hence this structure is ubiquitous in control theory. The (symmetric) principal pivot transform (PPT) is a map used by Mehrmann and Poloni [SIAM J. Matrix Anal. Appl., 33(2012), pp. 780–805] to convert between two different pairs (I, X) and (J , X 0 ) representing the same Lagrangian subspace. For a semidefinite Lagrangian subspace, we prove that the symmetric PPT of an I-semidefinite matrix X is a J -semidefinite matrix X 0 , and we derive an implementation of the transformation X 7→ X 0 that both makes use of the definiteness properties of X and guarantees the definiteness of the submatrices of X 0 in finite arithmetic. We use the resulting formulas to obtain a semidefiniteness-preserving version of an optimization algorithm introduced by Mehrmann and Poloni to compute a pair (I opt , X opt ) with M = max i,j |(X opt ) ij | as small as possible. Using semidefiniteness allows one to obtain a stronger inequality on M with respect to the general case.


2014 ◽  
Vol 57 (3) ◽  
pp. 551-561 ◽  
Author(s):  
Daniel M. Kane ◽  
Scott Duke Kominers

AbstractFor relatively prime positive integers u0 and r, we consider the least common multiple Ln := lcm(u0, u1..., un) of the finite arithmetic progression . We derive new lower bounds on Ln that improve upon those obtained previously when either u0 or n is large. When r is prime, our best bound is sharp up to a factor of n + 1 for u0 properly chosen, and is also nearly sharp as n → ∞.


Sign in / Sign up

Export Citation Format

Share Document