scholarly journals Congruence relations of Ankeny-Artin-Chowla type for pure cubic fields

1984 ◽  
Vol 96 ◽  
pp. 95-112 ◽  
Author(s):  
Hiroshi Ito

Ankeny, Artin and Chowla [1] proved a congruence relation among the class number, the fundamental unit of real quadratic fields, and the Bernoulli numbers. Our aim of this paper is to prove similar congruence relations for pure cubic fields. For this purpose, we use the Hurwitz numbers associated with the elliptic curve defined by y2 = 4x3 — 1 instead of the Bernoulli numbers (§ 3).

1987 ◽  
Vol 108 ◽  
pp. 131-144
Author(s):  
Masato Kamei

Ankeny, Artin and Chowla [1] showed that there are congruences between class numbers of real quadratic fields and generalized Bernoulli numbers. Recently, Ito [3] has extended their results to the case of pure cubic fields using generalized Hurwitz numbers of Lichtenbaum [4]. In his paper, he suggested that similar results would be obtained for pure quartic and sectic fields. In this paper, we carry out this by following his idea. To give a congruence in an exact form, we need an idea due to Matthews [5]. As the argument in the sectic case is quite parallel to that in the quartic case, we shall discuss the former case briefly in the last two sections.


Author(s):  
Joachim Petit

Abstract We investigate the number of curves having a rational point of almost minimal height in the family of quadratic twists of a given elliptic curve. This problem takes its origin in the work of Hooley, who asked this question in the setting of real quadratic fields. In particular, he showed an asymptotic estimate for the number of such fields with almost minimal fundamental unit. Our main result establishes the analogue asymptotic formula in the setting of quadratic twists of a fixed elliptic curve.


1965 ◽  
pp. 232-233
Author(s):  
N. C. Ankeney ◽  
E. Artin ◽  
S. Chowla

2019 ◽  
Vol 5 (1) ◽  
pp. 495-498
Author(s):  
Özen Özer

AbstractDifferent types of number theories such as elementary number theory, algebraic number theory and computational number theory; algebra; cryptology; security and also other scientific fields like artificial intelligence use applications of quadratic fields. Quadratic fields can be separated into two parts such as imaginary quadratic fields and real quadratic fields. To work or determine the structure of real quadratic fields is more difficult than the imaginary one.The Dirichlet class number formula is defined as a special case of a more general class number formula satisfying any types of number field. It includes regulator, ℒ-function, Dedekind zeta function and discriminant for the field. The Dirichlet’s class number h(d) formula in real quadratic fields claims that we have h\left(d \right).log {\varepsilon _d} = \sqrt {\Delta} {\scr L} \left({1,\;{\chi _d}}\right) for positive d > 0 and the fundamental unit ɛd of {\rm{\mathbb Q}}\left({\sqrt d} \right) . It is seen that discriminant, ℒ-function and fundamental unit ɛd are significant and necessary tools for determining the structure of real quadratic fields.The focus of this paper is to determine structure of some special real quadratic fields for d > 0 and d ≡ 2,3 (mod4). In this paper, we provide a handy technique so as to calculate particular continued fraction expansion of integral basis element wd, fundamental unit ɛd, and so on for such real quadratic number fields. In this paper, we get fascinating results in the development of real quadratic fields.


2014 ◽  
Vol 163 (4) ◽  
pp. 371-377 ◽  
Author(s):  
Debopam Chakraborty ◽  
Anupam Saikia

Sign in / Sign up

Export Citation Format

Share Document