scholarly journals Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces

2001 ◽  
Vol 161 ◽  
pp. 23-54 ◽  
Author(s):  
Ichiro Shimada ◽  
De-Qi Zhang

We present a complete list of extremal elliptic K3 surfaces (Theorem 1.1). As an application, we give a sufficient condition for the topological fundamental group of complement to an ADE-configuration of smooth rational curves on a K3 surface to be trivial (Proposition 4.1 and Theorem 4.3).

2005 ◽  
Vol 14 (02) ◽  
pp. 189-215 ◽  
Author(s):  
GREG FRIEDMAN

The classical knot groups are the fundamental groups of the complements of smooth or piecewise-linear (PL) locally-flat knots. For PL knots that are not locally-flat, there is a pair of interesting groups to study: the fundamental group of the knot complement and that of the complement of the "boundary knot" that occurs around the singular set, the set of points at which the embedding is not locally-flat. If a knot has only point singularities, this is equivalent to studying the groups of a PL locally-flat disk knot and its boundary sphere knot; in this case, we obtain a complete classification of all such group pairs in dimension ≥6. For more general knots, we also obtain complete classifications of these group pairs under certain restrictions on the singularities. Finally, we use spinning constructions to realize further examples of boundary knot groups.


1998 ◽  
Vol 58 (2) ◽  
pp. 233-237
Author(s):  
Gabriela Putinar

We use a Betti number estimate of Freedman-Hain-Teichner to show that the maximal torsion-free nilpotent quotient of the fundamental group of a 3-manifold with boundary is either Z or Z ⊕ Z. In particular we reobtain the Evans-Moser classification of 3-manifolds with boundary which have nilpotent fundamental groups.


2009 ◽  
Vol 01 (02) ◽  
pp. 123-151 ◽  
Author(s):  
IAN HAMBLETON ◽  
MATTHIAS KRECK ◽  
PETER TEICHNER

Closed oriented 4-manifolds with the same geometrically two-dimensional fundamental group (satisfying certain properties) are classified up to s-cobordism by their w2-type, equivariant intersection form and the Kirby–Siebenmann invariant. As an application, we obtain a complete homeomorphism classification of closed oriented 4-manifolds with solvable Baumslag–Solitar fundamental groups, including a precise realization result.


2013 ◽  
Vol 50 (1) ◽  
pp. 31-50
Author(s):  
C. Zhang

The purpose of this article is to utilize some exiting words in the fundamental group of a Riemann surface to acquire new words that are represented by filling closed geodesics.


2019 ◽  
Vol 7 (1) ◽  
pp. 257-262
Author(s):  
Kenji Toyonaga

Abstract Given a combinatorially symmetric matrix A whose graph is a tree T and its eigenvalues, edges in T can be classified in four categories, based upon the change in geometric multiplicity of a particular eigenvalue, when the edge is removed. We investigate a necessary and sufficient condition for each classification of edges. We have similar results as the case for real symmetric matrices whose graph is a tree. We show that a g-2-Parter edge, a g-Parter edge and a g-downer edge are located separately from each other in a tree, and there is a g-neutral edge between them. Furthermore, we show that the distance between a g-downer edge and a g-2-Parter edge or a g-Parter edge is at least 2 in a tree. Lastly we give a combinatorially symmetric matrix whose graph contains all types of edges.


2010 ◽  
Vol 03 (01) ◽  
pp. 155-184
Author(s):  
L. L. STACHÓ

Weighted grids are linearly independent sets {gw : w ∈ W} of signed tripotents in Jordan* triples indexed by figures W in real vector spaces such that {gugvgw} ∈ ℂgu-v+w (= 0 if u - v + w ∉ W). They arise naturally as systems of weight vectors of certain abelian families of Jordan* derivations. Based on Neher's grid theory, a classification of association free non-nil weighted grids is given. As a first step beyond the setting of classical grids, the complete list of complex weighted grids of pairwise associated signed tripotents indexed by ℤ2 is established.


2004 ◽  
Vol 134 (6) ◽  
pp. 1177-1197 ◽  
Author(s):  
Martin Krupa ◽  
Ian Melbourne

Systems possessing symmetries often admit robust heteroclinic cycles that persist under perturbations that respect the symmetry. In previous work, we began a systematic investigation into the asymptotic stability of such cycles. In particular, we found a sufficient condition for asymptotic stability, and we gave algebraic criteria for deciding when this condition is also necessary. These criteria are satisfied for cycles in R3.Field and Swift, and Hofbauer, considered examples in R4 for which our sufficient condition for stability is not optimal. They obtained necessary and sufficient conditions for asymptotic stability using a transition-matrix technique.In this paper, we combine our previous methods with the transition-matrix technique and obtain necessary and sufficient conditions for asymptotic stability for a larger class of heteroclinic cycles. In particular, we obtain a complete theory for ‘simple’ heteroclinic cycles in R4 (thereby proving and extending results for homoclinic cycles that were stated without proof by Chossat, Krupa, Melbourne and Scheel). A partial classification of simple heteroclinic cycles in R4 is also given. Finally, our stability results generalize naturally to higher dimensions and many of the higher-dimensional examples in the literature are covered by this theory.


Author(s):  
Sooran Kang ◽  
David Pask ◽  
Samuel B.G. Webster

Abstract We compute a presentation of the fundamental group of a higher-rank graph using a coloured graph description of higher-rank graphs developed by the third author. We compute the fundamental groups of several examples from the literature. Our results fit naturally into the suite of known geometrical results about higher-rank graphs when we show that the abelianization of the fundamental group is the homology group. We end with a calculation which gives a non-standard presentation of the fundamental group of the Klein bottle to the one normally found in the literature.


2012 ◽  
Vol 64 (3) ◽  
pp. 573-587 ◽  
Author(s):  
Norio Nawata

Abstract We introduce the fundamental group ℱ(A) of a simple σ-inital C*-algebra A with unique (up to scalar multiple) densely defined lower semicontinuous trace. This is a generalization of Fundamental Group of Simple C*-algebras with Unique Trace I and II by Nawata andWatatani. Our definition in this paper makes sense for stably projectionless C*-algebras. We show that there exist separable stably projectionless C*-algebras such that their fundamental groups are equal to ℝ×+ by using the classification theorem of Razak and Tsang. This is a contrast to the unital case in Nawata and Watatani. This study is motivated by the work of Kishimoto and Kumjian.


1996 ◽  
Vol 16 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Fabio Fagnani

AbstractIn this paper we study expansive automorphisms of compact 0-dimensional abelian groups. Our main result is the complete algebraic and topological classification of the transitive expansive automorpisms for which the maximal order of the elements isp2for a primep. This yields a classification of the transitive expansive automorphisms with topological entropy logp2. Finally, we prove a necessary and sufficient condition for an expansive automorphism to be conjugated, topologically and algebraically, to a shift over a finite group.


Sign in / Sign up

Export Citation Format

Share Document