Posthodiplostomum cuticola(Digenea: Diplostomatidae) in intermediate fish hosts: factors contributing to the parasite infection and prey selection by the definitive bird host

Parasitology ◽  
2004 ◽  
Vol 129 (6) ◽  
pp. 761-770 ◽  
Author(s):  
M. ONDRAČKOVÁ ◽  
A. šIMKOVÁ ◽  
M. GELNAR ◽  
P. JURAJDA

Infection parameters ofPosthodiplostomum cuticola, a digenean parasite with a complex life-cycle, were investigated in fish (the second intermediate host) from 6 floodplain water bodies over 2 years. A broad range of factors related to abiotic characteristics of localities, density of the first intermediate (planorbid snails) and definitive (wading birds) hosts and fish community structure were tested for their effects onP. cuticolainfection in juvenile and adult fish. Characters of the littoral zone and flood duration were found to be important factors for the presence of the first intermediate and definitive hosts. Visitation time of definitive bird hosts was also related to adult fish host density. Localities withP. cuticolainfected fish were visited by a higher number of bird species. Infection ofP. cuticolain fish and similarities in infection among fish host assemblages were correlated with fish host density and fish species composition. Parasite infection in both adult and juvenile fishes was associated with the slope of the bank and the bottom type, in particular in juvenile fish assemblages with snail host density. We conclude that habitat characteristics, snail host density and fish community structure contribute significantly toP. cuticolainfection in fish hosts.

2019 ◽  
Vol 609 ◽  
pp. 33-48 ◽  
Author(s):  
RP Lyon ◽  
DB Eggleston ◽  
DR Bohnenstiehl ◽  
CA Layman ◽  
SW Ricci ◽  
...  

2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


2018 ◽  
Vol 25 (2) ◽  
pp. 229
Author(s):  
Zhongyi LI ◽  
Qiang WU ◽  
Xiujuan SHAN ◽  
Tao YANG ◽  
Fangqun DAI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document