environmental dna
Recently Published Documents


TOTAL DOCUMENTS

1858
(FIVE YEARS 1151)

H-INDEX

92
(FIVE YEARS 22)

2022 ◽  
Vol 9 ◽  
Author(s):  
Iain Perry ◽  
Ifan B. Jâms ◽  
Roser Casas-Mulet ◽  
Josefina Hamutoko ◽  
Angela Marchbank ◽  
...  

By identifying fragments of DNA in the environment, eDNA approaches present a promising tool for monitoring biodiversity in a cost-effective way. This is particularly pertinent for countries where traditional morphological monitoring has been sparse. The first step to realising the potential of eDNA is to develop methodologies that are adapted to local conditions. Here, we test field and laboratory eDNA protocols (aqueous and sediment samples) in a range of semi-arid ecosystems in Namibia. We successfully gathered eDNA data on a broad suite of organisms at multiple trophic levels (including algae, invertebrates and bacteria) but identified two key challenges to the implementation of eDNA methods in the region: 1) high turbidity requires a tailored sampling technique and 2) identification of taxa by eDNA methods is currently constrained by a lack of reference data. We hope this work will guide the deployment of eDNA biomonitoring in the arid ecosystems of Namibia and neighbouring countries.


2022 ◽  
Vol 8 ◽  
Author(s):  
Peter A. U. Staehr ◽  
Karsten Dahl ◽  
Helle Buur ◽  
Cordula Göke ◽  
Rumakanta Sapkota ◽  
...  

We investigated the use of eDNA metabarcoding for supplementing traditional diver-based monitoring of biodiversity of marine boulder reefs within the photic zone. The applied sampling design made it possible to evaluate the usefulness of eDNA monitoring as a supplement for traditional monitoring. Specifically, this study aimed to (1) assess the local influence of boulder reefs on biodiversity across the North Sea to Baltic Sea transition zone and (2) investigate the importance of environmental gradients for patterns in community structure. On samples collected during August 2020, we compared the composition and abundance of species associated with nine reefs, representing an environmental gradient of salinity (16–33 psu), water temperature (16–21°C) and water depth (6–29 m). At each reef site, water was sampled near the bottom just above the reef and on average 2.6 km upstream and downstream (location) and sequenced with metabarcoding using COI, 18S and 12S rDNA primers. eDNA identified 400 species, diver-based observations identified 184 with an overlap of 70 species (12%) and 81 genera (18%). While eDNA identified many infaunal species, it did not detect several macroalgal species which dominated in the diver-based observations. Multivariate analysis of eDNA and diver-based community structure both distinguished between reef communities, with a significant match between patterns observed by the two methods (r = 0.37, p = 0.02). Furthermore, the eDNA approach made it possible to identify significant differences in species composition between upstream, above-reef and downstream locations, suggesting that eDNA leaves a local footprint in benthic habitats. Patterns in both eDNA and diver-based species composition and richness were significantly related to geographical distance, salinity, water temperature and water depth. Despite of low detection of macroalgae, the eDNA sampling provided a substantial supplement to traditional diver-based monitoring of biodiversity around benthic hotspots in the Danish marine waters and therefore we recommend to add eDNA methods to conventional monitoring programs in the future.


2022 ◽  
Vol 8 ◽  
Author(s):  
Sergio Stefanni ◽  
Luca Mirimin ◽  
David Stanković ◽  
Damianos Chatzievangelou ◽  
Lucia Bongiorni ◽  
...  

Deep-sea ecosystems are reservoirs of biodiversity that are largely unexplored, but their exploration and biodiscovery are becoming a reality thanks to biotechnological advances (e.g., omics technologies) and their integration in an expanding network of marine infrastructures for the exploration of the seas, such as cabled observatories. While still in its infancy, the application of environmental DNA (eDNA) metabarcoding approaches is revolutionizing marine biodiversity monitoring capability. Indeed, the analysis of eDNA in conjunction with the collection of multidisciplinary optoacoustic and environmental data, can provide a more comprehensive monitoring of deep-sea biodiversity. Here, we describe the potential for acquiring eDNA as a core component for the expanding ecological monitoring capabilities through cabled observatories and their docked Internet Operated Vehicles (IOVs), such as crawlers. Furthermore, we provide a critical overview of four areas of development: (i) Integrating eDNA with optoacoustic imaging; (ii) Development of eDNA repositories and cross-linking with other biodiversity databases; (iii) Artificial Intelligence for eDNA analyses and integration with imaging data; and (iv) Benefits of eDNA augmented observatories for the conservation and sustainable management of deep-sea biodiversity. Finally, we discuss the technical limitations and recommendations for future eDNA monitoring of the deep-sea. It is hoped that this review will frame the future direction of an exciting journey of biodiscovery in remote and yet vulnerable areas of our planet, with the overall aim to understand deep-sea biodiversity and hence manage and protect vital marine resources.


2022 ◽  
Author(s):  
Annette F. Govindarajan ◽  
Luke McCartin ◽  
Allan Adams ◽  
Elizabeth Allan ◽  
Abhimanyu Belani ◽  
...  

Metabarcoding analysis of environmental DNA samples is a promising new tool for marine biodiversity and conservation. Typically, seawater samples are obtained using Niskin bottles and filtered to collect eDNA. However, standard sample volumes are small relative to the scale of the environment, conventional collection strategies are limited, and the filtration process is time consuming. To overcome these limitations, we developed a new large-volume eDNA sampler with in situ filtration, capable of taking up to 12 samples per deployment. We conducted three deployments of our sampler on the robotic vehicle Mesobot in the Flower Garden Banks National Marine Sanctuary in the northwestern Gulf of Mexico and collected samples from 20 to 400 m depth. We compared the large volume (~40-60 liters) samples collected by Mesobot with small volume (~2 liters) samples collected using the conventional CTD-mounted Niskin bottle approach. We sequenced the V9 region of 18S rRNA, which detects a broad range of invertebrate taxa, and found that while both methods detected biodiversity changes associated with depth, our large volume samples detected approximately 66% more taxa than the CTD small volume samples. We found that the fraction of the eDNA signal originating from metazoans relative to the total eDNA signal decreased with sampling depth, indicating that larger volume samples may be especially important for detecting metazoans in mesopelagic and deep ocean environments. We also noted substantial variability in biological replicates from both the large volume Mesobot and small volume CTD sample sets. Both of the sample sets also identified taxa that the other did not; although the number of unique taxa associated with the Mesobot samples was almost four times larger than those from the CTD samples. Large volume eDNA sampling with in situ filtration, particularly when coupled with robotic platforms, has great potential for marine biodiversity surveys, and we discuss practical methodological and sampling considerations for future applications.


2022 ◽  
Author(s):  
Jack A. Greenhalgh ◽  
Rupert A. Collins ◽  
Duncan E. Edgley ◽  
Martin J. Genner ◽  
Jan Hindle ◽  
...  

2022 ◽  
Author(s):  
Takumi Saito

In the era of globalization, biological invasions are one of the most serious social issues. Thus, managing its impact is an urgent task. It is essential to control non-native species before they become established. However, it is insufficient to address establishment debt, which occurs when a non-native species has been introduced into an area but has not yet been established in the wild. In particular, unintentionally introduced or contaminated organisms of the aquatic ornamental pet trade are referred to as “hitchhikers” and have not received much attention in the context of establishment debt. To understand the nature of establishment debt, including that of aquatic hitchhikers, I propose the monitoring of non-native species inhabiting artificial isolated waters, such as indoor aquariums, and the construction of a database using environmental DNA metabarcoding. This idea would be an effective non-regulatory management approach when implemented broadly, at the country level. Furthermore, implementation of this strategy in combination with border biosecurity and field monitoring may promote accurate prioritization, rapid species identification, and effective invasion pathway assessment.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262357
Author(s):  
Cédric Mariac ◽  
Fabrice Duponchelle ◽  
Guido Miranda ◽  
Camila Ramallo ◽  
Robert Wallace ◽  
...  

To date, more than 2400 valid fish species have been recorded in the Amazon basin. However, some regions remain poorly documented. This is the case in the Beni basin and in particular in one of its main sub-basins, the Tuichi, an Andean foothills rivers flowing through the Madidi National Park in the Bolivian Amazonia. The knowledge of its ichthyological diversity is, however, essential for the management and protection of aquatic ecosystems, which are threatened by the development of infrastructures (dams, factories and cities), mining and deforestation. Environmental DNA (eDNA) has been relatively little used so far in the Amazon basin. We sampled eDNA from water in 34 sites in lakes and rivers in the Beni basin including 22 sites in the Tuichi sub-basin, during the dry season. To assess the biogeographical patterns of the amazonian ichthyofauna, we implemented a metabarcoding approach using two pairs of specific primers designed and developed in our laboratory to amplify two partially overlapping CO1 fragments, one of 185bp and another of 285bp. We detected 252 fish taxa (207 at species level) among which 57 are newly identified for the Beni watershed. Species compositions are significantly different between lakes and rivers but also between rivers according to their hydrographic rank and altitude. Furthermore, the diversity patterns are related to the different hydro-ecoregions through which the Tuichi flows. The eDNA approach makes it possible to identify and complete the inventory of the ichthyofauna in this still poorly documented Amazon basin. However, taxonomic identification remains constrained by the lack of reference barcodes in public databases and does not allow the assignment of all OTUs. Our results can be taken into account in conservation and management strategies and could serve as a baseline for future studies, including on other Andean tributaries.


2022 ◽  
Author(s):  
Christina Lynggaard ◽  
Mads Frost Bertelsen ◽  
Casper V. Jensen ◽  
Matthew S. Johnson ◽  
Tobias Guldberg Frøslev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document