fish host
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 57)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 16 (4) ◽  
pp. 623-634
Author(s):  
Harith Saeed Al-Warid ◽  
◽  
Ahmed Saad Aldhamin ◽  
Azhar Ahmed Al-Moussawi ◽  
◽  
...  

This study was achieved to investigate the accumulation of some heavy metals included: Cadmium, Lead and Nickel in the tissues (gill, intestine, liver, muscles and skin) of Silurus triostegus Heckel, 1843 (Siluriformes, Siluridae) and its larval stage of the nematode Contracaecum sp. (Rhabditida, Anisakidae). As well as to assess the infection patterns of Contracaecum among S. triostegus specimens which were purchased fresh from the local market in Baghdad. One hundred and nine nematodes specimens in larval stage were recovered from the fish host; the overall prevalence of Contracaecum sp. was 38.6%. The sex of the host was not significantly (P ˃ 0.05) associated with the infection of this nematode. Results showed that the overall mean intensity of Contracaecum sp. was 6.41; mean intensity did not differ significantly (P ˃ 0.05) between the fish sexes.The lead (Pb) was the only element detected in all fish tissues investigated as well as in the parasite, while the cadmium and nickel elements were not detected in all specimens. Skin and muscles of the fish, as well the parasite Contracaecum sp. contained the lowest lead levels compared to other fish tissues (gill, intestine and liver), although no significant differences were noticed among all investigated tissues and the parasite regarding the concentration of Pb.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12606
Author(s):  
Benjamin Americus ◽  
Nicole Hams ◽  
Anna M. L. Klompen ◽  
Gema Alama-Bermejo ◽  
Tamar Lotan ◽  
...  

Background Cnidarians are the most ancient venomous organisms. They store a cocktail of venom proteins inside unique stinging organelles called nematocysts. When a cnidarian encounters chemical and physical cues from a potential threat or prey animal, the nematocyst is triggered and fires a harpoon-like tubule to penetrate and inject venom into the prey. Nematocysts are present in all Cnidaria, including the morphologically simple Myxozoa, which are a speciose group of microscopic, spore-forming, obligate parasites of fish and invertebrates. Rather than predation or defense, myxozoans use nematocysts for adhesion to hosts, but the involvement of venom in this process is poorly understood. Recent work shows some myxozoans have a reduced repertoire of venom-like compounds (VLCs) relative to free-living cnidarians, however the function of these proteins is not known. Methods We searched for VLCs in the nematocyst proteome and a time-series infection transcriptome of Ceratonova shasta, a myxozoan parasite of salmonid fish. We used four parallel approaches to detect VLCs: BLAST and HMMER searches to preexisting cnidarian venom datasets, the machine learning tool ToxClassifier, and structural modeling of nematocyst proteomes. Sequences that scored positive by at least three methods were considered VLCs. We then mapped their time-series expressions in the fish host and analyzed their phylogenetic relatedness to sequences from other venomous animals. Results We identified eight VLCs, all of which have closely related sequences in other myxozoan datasets, suggesting a conserved venom profile across Myxozoa, and an overall reduction in venom diversity relative to free-living cnidarians. Expression of the VLCs over the 3-week fish infection varied considerably: three sequences were most expressed at one day post-exposure in the fish’s gills; whereas expression of the other five VLCs peaked at 21 days post-exposure in the intestines, coinciding with the formation of mature parasite spores with nematocysts. Expression of VLC genes early in infection, prior to the development of nematocysts, suggests venoms in C. shasta have been repurposed to facilitate parasite invasion and proliferation within the host. Molecular phylogenetics suggested some VLCs were inherited from a cnidarian ancestor, whereas others were more closely related to sequences from venomous non-Cnidarian organisms and thus may have gained qualities of venom components via convergent evolution. The presence of VLCs and their differential expression during parasite infection enrich the concept of what functions a “venom” can have and represent targets for designing therapeutics against myxozoan infections.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12287
Author(s):  
Trevor L. Hewitt ◽  
Amanda E. Haponski ◽  
Diarmaid Ó. Foighil

North American watersheds contain a high diversity of freshwater mussels (Unionoida). During the long-lived, benthic phase of their life cycle, up to 40 species can co-occur in a single riffle and there is typically little evidence for major differences in their feeding ecology or microhabitat partitioning. In contrast, their brief parasitic larval phase involves the infection of a wide diversity of fish hosts and female mussels have evolved a spectrum of adaptations for infecting host fish with their offspring. Many species use a passive broadcast strategy: placing high numbers of larvae in the water column and relying on chance encounters with potential hosts. Many other species, including most members of the Lampsilini, have a proactive strategy that entails the use of prey-mimetic lures to change the behavior of the hosts, i.e., eliciting a feeding response through which they become infected. Two main lure types are collectively produced: mantle tissue lures (on the female’s body) and brood lures, containing infective larvae, that are released into the external environment. In this study, we used a phylogenomic approach (ddRAD-seq) to place the diversity of infection strategies used by 54 North American lampsiline mussels into an evolutionary context. Ancestral state reconstruction recovered evidence for the early evolution of mantle lures in this clade, with brood lures and broadcast infection strategies both being independently derived twice. The most common infection strategy, occurring in our largest ingroup clade, is a mixed one in which mimetic mantle lures are apparently the predominant infection mechanism, but gravid females also release simple, non-mimetic brood lures at the end of the season. This mixed infection strategy clade shows some evidence of an increase in diversification rate and most members use centrarchids (Micropterus & Lepomis spp.) as their predominant fish hosts. Broad linkage between infection strategies and predominant fish host genera is also seen in other lampsiline clades: worm-like mantle lures of Toxolasma spp. with sunfish (Lepomis spp.); insect larvae-like brood lures (Ptychobranchus spp.), or mantle lures (Medionidus spp., Obovaria spp.), or mantle lures combined with host capture (Epioblasma spp.) with a spectrum of darter (Etheostoma & Percina spp.) and sculpin (Cottus spp.) hosts, and tethered brood lures (Hamiota spp.) with bass (Micropterus spp.). Our phylogenetic results confirm that discrete lampsiline mussel clades exhibit considerable specialization in the primary fish host clades their larvae parasitize, and in the host infection strategies they employ to do so. They are also consistent with the hypothesis that larval resource partitioning of fish hosts is an important factor in maintaining species diversity in mussel assemblages. We conclude that, taking their larval ecology and host-infection mechanisms into account, lampsiline mussels may be legitimately viewed as an adaptive radiation.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Amy R. Ellison ◽  
David Wilcockson ◽  
Jo Cable

Abstract Background Circadian rhythms of host immune activity and their microbiomes are likely pivotal to health and disease resistance. The integration of chronotherapeutic approaches to disease mitigation in managed animals, however, is yet to be realised. In aquaculture, light manipulation is commonly used to enhance growth and control reproduction but may have unknown negative consequences for animal health. Infectious diseases are a major barrier to sustainable aquaculture and understanding the circadian dynamics of fish immunity and crosstalk with the microbiome is urgently needed. Results Here, using rainbow trout (Oncorhynchus mykiss) as a model, we combine 16S rRNA metabarcoding, metagenomic sequencing and direct mRNA quantification methods to simultaneously characterise the circadian dynamics of skin clock and immune gene expression, and daily changes of skin microbiota. We demonstrate daily rhythms in fish skin immune expression and microbiomes, which are modulated by photoperiod and parasitic lice infection. We identify putative associations of host clock and immune gene profiles with microbial composition. Our results suggest circadian perturbation, that shifts the magnitude and timing of immune and microbiota activity, is detrimental to fish health. Conclusions The substantial circadian dynamics and fish host expression-microbiome relationships we find represent a valuable foundation for investigating the utility of chronotherapies in aquaculture, and more broadly contributes to our understanding of the role of microbiomes in circadian health of vertebrates.


2021 ◽  
Author(s):  
Eglantine Mathieu‐Bégné ◽  
Simon Blanchet ◽  
Olivier Rey ◽  
Orlane Scelsi ◽  
Camille Poesy ◽  
...  

Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 49
Author(s):  
Reda Hassanine ◽  
Zaki Al-Hasawi

Toxic metal pollutants in aquatic environments and infestationwith intestinal helminths adversely affect the fish health, as well as fish consumers. Acanthocephalan worms in fish intestine have a high potential to absorb and bioaccumulate different heavy metals, especially toxic ones, from the intestine via their tegument with greater efficiency than the fish intestinal wall. Herein, 47 specimens of the fish Siganusrivulatus were trapped in the Red Sea, Egypt, from a chronically polluted bay. All were intoxicatedwith Cd and Pb; 20 (42.5%) were uninfected with any intestinal worm, but the other 27 (57.5%) were infected only by the intestinal acanthocephalan Sclerocollum rubrimaris. The number of individual worms in a fish host (infrapopulation size) ranged from 32 to 236. As a reference group, 22 uncontaminated–uninfected specimens of S. rivulatus were trapped from a small unpolluted bay. Our results revealed that infection with acanthocephalans alleviatesthe harmful effectsof toxic metalson their fish hosts by: (1) lowering the elevated concentrations of both Cd and Pb in fish liver; (2) lowering the elevated levels of liver enzymes (ALT, AST, ALP, and GGT), glucose, triglycerides, and urea in fish blood serum; and (3) raising the declined levels of total protein and albumin in fish blood serum. All of these were dependent on S. rubrimaris infrapopulation size in fish intestine.


2021 ◽  
pp. 118175
Author(s):  
Tímea Brázová ◽  
Dana Miklisová ◽  
Daniel Barčák ◽  
Dalibor Uhrovič ◽  
Peter Šalamún ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chloé Suzanne Berger ◽  
Jérôme Laroche ◽  
Halim Maaroufi ◽  
Hélène Martin ◽  
Kyung-Mee Moon ◽  
...  

Abstract Background Manipulative parasites are thought to liberate molecules in their external environment, acting as manipulation factors with biological functions implicated in their host’s physiological and behavioural alterations. These manipulation factors are part of a complex mixture called the secretome. While the secretomes of various parasites have been described, there is very little data for a putative manipulative parasite. It is necessary to study the molecular interaction between a manipulative parasite and its host to better understand how such alterations evolve. Methods Here, we used proteomics to characterize the secretome of a model cestode with a complex life cycle based on trophic transmission. We studied Schistocephalus solidus during the life stage in which behavioural changes take place in its obligatory intermediate fish host, the threespine stickleback (Gasterosteus aculeatus). We produced a novel genome sequence and assembly of S. solidus to improve protein coding gene prediction and annotation for this parasite. We then described the whole worm’s proteome and its secretome during fish host infection using LC–MS/MS. Results A total of 2290 proteins were detected in the proteome of S. solidus, and 30 additional proteins were detected specifically in the secretome. We found that the secretome contains proteases, proteins with neural and immune functions, as well as proteins involved in cell communication. We detected receptor-type tyrosine-protein phosphatases, which were reported in other parasitic systems to be manipulation factors. We also detected 12 S. solidus-specific proteins in the secretome that may play important roles in host–parasite interactions. Conclusions Our results suggest that S. solidus liberates molecules with putative host manipulation functions in the host and that many of them are species-specific. Graphical abstract


BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Andrea Valigurová ◽  
Naděžda Vaškovicová ◽  
Milan Gelnar ◽  
Magdaléna Kováčiková ◽  
Iveta Hodová

Abstract Background Monogeneans, in general, show a range of unique adaptations to a parasitic lifestyle, making this group enormously diverse. Due to their unique biological properties, diplozoid monogeneans represent an attractive model group for various investigations on diverse biological interactions. However, despite numerous studies, there are still gaps in our knowledge of diplozoid biology and morphofunctional adaptations. Results In this study, we provide a comprehensive microscopic analysis of systems/structures involved in niche searching, sensing and self-protection against the host environment, and excretory/secretory processes in Eudiplozoon nipponicum. Freeze-etching enabled us to detect syncytium organisational features not visible by TEM alone, such as the presence of a membrane subjacent to the apical plasma membrane (separated by a dense protein layer) and a lack of basal plasma membrane. We located several types of secretory/excretory vesicles and bodies, including those attached to the superficial membranes of the tegument. Giant unicellular glands were seen accumulating predominantly in the apical forebody and hindbody haptor region. Muscle layer organisation differed from that generally described, with the outer circular and inner longitudinal muscles being basket-like interwoven by diagonal muscles with additional perpendicular muscles anchored to the tegument. Abundant muscles within the tegumentary ridges were detected, which presumably assist in fixing the parasite between the gill lamellae. Freeze-etching, alongside transmission electron and confocal microscopy with tubulin labelling, enabled visualisation of the protonephridia and nervous system, including the peripheral network and receptor innervation. Three types of receptor were identified: 1) uniciliated sensory endings with a subtle (or missing) tegumentary rim, 2) obviously raised uniciliated receptors with a prominent tegumentary rim (packed with massive innervation and muscles) and 3) non-ciliated papillae (restricted to the hindbody lateral region). Conclusions This study points to specific morphofunctional adaptations that have evolved in diplozoid monogeneans to confront their fish host. We clearly demonstrate that the combination of different microscopic techniques is beneficial and can reveal hidden differences, even in much-studied model organisms such as E. nipponicum.


Sign in / Sign up

Export Citation Format

Share Document