The evolution of pentameric ligand-gated ion-channels and the changing family of anthelmintic drug targets

Parasitology ◽  
2014 ◽  
Vol 142 (2) ◽  
pp. 303-317 ◽  
Author(s):  
ROBIN N. BEECH ◽  
CÉDRIC NEVEU

SUMMARYPentameric ligand-gated ion-channels rapidly transduce synaptic neurotransmitter signals to an electrical response in post-synaptic neuronal or muscle cells and control the neuromusculature of a majority of multicellular animals. A wide range of pharmaceuticals target these receptors including ethanol, nicotine, anti-depressants and other mood regulating drugs, compounds that control pain and mobility and are targeted by a majority of anthelmintic drugs used to control parasitic infection of humans and livestock. Major advances have been made in recent years to our understanding of the structure, function, activity and the profile of compounds that can activate specific receptors. It is becoming clear that these anthelmintic drug targets are not fixed, but differ in significant details from one nematode species to another. Here we review what is known about the evolution of the pentameric ligand-gated ion-channels, paying particular attention to the nematodes, how we can infer the origins of such receptors and understand the factors that determine how they change both over time and from one species to another. Using this knowledge provides a biological framework in which to understand these important drug targets and avenues to identify new receptors and aid the search for new anthelmintic drugs.

2012 ◽  
pp. 1-21 ◽  
Author(s):  
Kristin Lees ◽  
Ann Sluder ◽  
Niroda Shannan ◽  
Lance Hammerland ◽  
David Sattelle

Plant Biology ◽  
2010 ◽  
Vol 12 ◽  
pp. 80-93 ◽  
Author(s):  
P. Dietrich ◽  
U. Anschütz ◽  
A. Kugler ◽  
D. Becker

2021 ◽  
Vol 125 (4) ◽  
pp. 981-994
Author(s):  
Shanlin Rao ◽  
Gianni Klesse ◽  
Charlotte I. Lynch ◽  
Stephen J. Tucker ◽  
Mark S. P. Sansom

Author(s):  
Makoto Ihara

Abstract The Cys-loop superfamily of ligand-gated ion channels (Cys-loop receptors) is one of the most ubiquitous ion channel families in vertebrates and invertebrates. Despite their ubiquity, they are targeted by several classes of pesticides, including neonicotinoids, phenylpyrazols, and macrolides such as ivermectins. The current commercialized compounds have high target site selectivity, which contributes to the safety of insecticide use. Structural analyses have accelerated progress in this field; notably, the X-ray crystal structures of acetylcholine binding protein and glutamate-gated Cl channels revealed the details of the molecular interactions between insecticides and their targets. Recently, the functional expression of the insect nicotinic acetylcholine receptor (nAChR) has been described, and detailed evaluations using the insect nAChR have emerged. This review discusses the basic concepts and the current insights into the molecular mechanisms of neuroactive insecticides targeting the ligand-gated ion channels, particularly Cys-loop receptors, and presents insights into target-based selectivity, resistance, and future drug design.


Sign in / Sign up

Export Citation Format

Share Document