scholarly journals Abnormalities of cortical structures in adolescent-onset conduct disorder

2015 ◽  
Vol 45 (16) ◽  
pp. 3467-3479 ◽  
Author(s):  
Y. Jiang ◽  
X. Guo ◽  
J. Zhang ◽  
J. Gao ◽  
X. Wang ◽  
...  

Background.Converging evidence has revealed both functional and structural abnormalities in adolescents with early-onset conduct disorder (EO-CD). The neurological abnormalities underlying EO-CD may be different from that of adolescent-onset conduct disorder (AO-CD) patients. However, the cortical structure in AO-CD patients remains largely unknown. The aim of the present study was to investigate the cortical alterations in AO-CD patients.Method.We investigated T1-weighted brain images from AO-CD patients and age-, gender- and intelligence quotient-matched controls. Cortical structures including thickness, folding and surface area were measured using the surface-based morphometric method. Furthermore, we assessed impulsivity and antisocial symptoms using the Barratt Impulsiveness Scale (BIS) and the Antisocial Process Screening Device (APSD).Results.Compared with the controls, we found significant cortical thinning in the paralimbic system in AO-CD patients. For the first time, we observed cortical thinning in the precuneus/posterior cingulate cortex (PCC) in AO-CD patients which has not been reported in EO-CD patients. Prominent folding abnormalities were found in the paralimbic structures and frontal cortex while diminished surface areas were shown in the precentral and inferior temporal cortex. Furthermore, cortical thickness of the paralimbic structures was found to be negatively correlated with impulsivity and antisocial behaviors measured by the BIS and APSD, respectively.Conclusions.The present study indicates that AO-CD is characterized by cortical structural abnormalities in the paralimbic system, and, in particular, we highlight the potential role of deficient structures including the precuneus and PCC in the etiology of AO-CD.

2021 ◽  
pp. 1-11
Author(s):  
Graeme Fairchild ◽  
Kate Sully ◽  
Luca Passamonti ◽  
Marlene Staginnus ◽  
Angela Darekar ◽  
...  

Abstract Background Previous studies have reported brain structure abnormalities in conduct disorder (CD), but it is unclear whether these neuroanatomical alterations mediate the effects of familial (genetic and environmental) risk for CD. We investigated brain structure in adolescents with CD and their unaffected relatives (URs) to identify neuroanatomical markers of familial risk for CD. Methods Forty-one adolescents with CD, 24 URs of CD probands, and 38 healthy controls (aged 12–18), underwent structural magnetic resonance imaging. We performed surface-based morphometry analyses, testing for group differences in cortical volume, thickness, surface area, and folding. We also assessed the volume of key subcortical structures. Results The CD and UR groups both displayed structural alterations (lower surface area and folding) in left inferior parietal cortex compared with controls. In contrast, CD participants showed lower insula and pars opercularis volume than controls, and lower surface area and folding in these regions than controls and URs. The URs showed greater folding in rostral anterior cingulate and inferior temporal cortex than controls and greater medial orbitofrontal folding than CD participants. The surface area and volume differences were not significant when controlling for attention-deficit/hyperactivity disorder comorbidity. There were no group differences in subcortical volumes. Conclusions These findings suggest that alterations in inferior parietal cortical structure partly mediate the effects of familial risk for CD. These structural changes merit investigation as candidate endophenotypes for CD. Neuroanatomical changes in medial orbitofrontal and anterior cingulate cortex differentiated between URs and the other groups, potentially reflecting neural mechanisms of resilience to CD.


2014 ◽  
Vol 111 (12) ◽  
pp. 2589-2602 ◽  
Author(s):  
Hiroshi Tamura ◽  
Yoshiya Mori ◽  
Hidekazu Kaneko

Detailed knowledge of neuronal circuitry is necessary for understanding the mechanisms underlying information processing in the brain. We investigated the organization of horizontal functional interactions in the inferior temporal cortex of macaque monkeys, which plays important roles in visual object recognition. Neuronal activity was recorded from the inferior temporal cortex using an array of eight tetrodes, with spatial separation between paired neurons up to 1.4 mm. We evaluated functional interactions on a time scale of milliseconds using cross-correlation analysis of neuronal activity of the paired neurons. Visual response properties of neurons were evaluated using responses to a set of 100 visual stimuli. Adjacent neuron pairs tended to show strong functional interactions compared with more distant neuron pairs, and neurons with similar stimulus preferences tended to show stronger functional interactions than neurons with different stimulus preferences. Thus horizontal functional interactions in the inferior temporal cortex appear to be organized according to both cortical distances and similarity in stimulus preference between neurons. Furthermore, the relationship between strength of functional interactions and similarity in stimulus preference observed in distant neuron pairs was more prominent than in adjacent pairs. The results suggest that functional circuitry is specifically organized, depending on the horizontal distances between neurons. Such specificity endows each circuit with unique functions.


2013 ◽  
Vol 33 (42) ◽  
pp. 16642-16656 ◽  
Author(s):  
T. Sato ◽  
G. Uchida ◽  
M. D. Lescroart ◽  
J. Kitazono ◽  
M. Okada ◽  
...  

2010 ◽  
Vol 22 (12) ◽  
pp. 2979-3035 ◽  
Author(s):  
Stefan Klampfl ◽  
Wolfgang Maass

Neurons in the brain are able to detect and discriminate salient spatiotemporal patterns in the firing activity of presynaptic neurons. It is open how they can learn to achieve this, especially without the help of a supervisor. We show that a well-known unsupervised learning algorithm for linear neurons, slow feature analysis (SFA), is able to acquire the discrimination capability of one of the best algorithms for supervised linear discrimination learning, the Fisher linear discriminant (FLD), given suitable input statistics. We demonstrate the power of this principle by showing that it enables readout neurons from simulated cortical microcircuits to learn without any supervision to discriminate between spoken digits and to detect repeated firing patterns that are embedded into a stream of noise spike trains with the same firing statistics. Both these computer simulations and our theoretical analysis show that slow feature extraction enables neurons to extract and collect information that is spread out over a trajectory of firing states that lasts several hundred ms. In addition, it enables neurons to learn without supervision to keep track of time (relative to a stimulus onset, or the initiation of a motor response). Hence, these results elucidate how the brain could compute with trajectories of firing states rather than only with fixed point attractors. It also provides a theoretical basis for understanding recent experimental results on the emergence of view- and position-invariant classification of visual objects in inferior temporal cortex.


Sign in / Sign up

Export Citation Format

Share Document