scholarly journals Particle Energization in Stochastic Double Layers

1985 ◽  
Vol 107 ◽  
pp. 125-129
Author(s):  
William Lotko

Electrostatic turbulence develops in current carrying plasmas when the relative electron-ion drift exceeds the critical value for laminar current flow. Recent 2D computer experiments (Barnes, 1982) indicate that many weak ion acoustic double layers form in such turbulence when the plasma is strongly magnetized (ωce ≳ ωpe), the electron/ion temperature ratio is large (≳10), and the relative electron-ion drift is comparable to or less than the electron thermal speed. The double layers emerge from the incoherent spectrum of electrostatic ion cyclotron and ion acoustic waves as intense localized electric field structures propagating subsonically relative to the ion bulk flow. The occurrence of weak ion acoustic double layers, excited by field-aligned currents in the Earth's auroral regions, has also been reported from in situ spacecraft measurements (Temerin et al., 1982). An important question concerns the effect of these coherent electric fields on plasma transport properties such as bulk heating and acceleration. For example, one might expect nonlinear diffusion processes, manifested as distinct nonthermal features in the particle spectra, to accompany the quasilinear diffusion of ions as they traverse turbulent regions in space. This idea motivates the work presented here.

1990 ◽  
Vol 68 (2) ◽  
pp. 222-226 ◽  
Author(s):  
R. K. Roychoudhury ◽  
Sikha Bhattacharyya ◽  
Y. P. Varshni

The conditions for the existence of an ion-acoustic double layer in a plasma with warm ions and two distinct groups of hot electrons have been studied using the Sagdeev potential method. A comparison is made with the published results of Bharuthram and Shukla for cold ions and a two-temperature electron population. Numerical studies have been made to find out the effect of a finite ion temperature on the Mach number of the double layers.


2013 ◽  
Vol 79 (5) ◽  
pp. 661-675 ◽  
Author(s):  
S. K. JAIN ◽  
M. K. MISHRA

AbstractThe large-amplitude ion-acoustic double layers in a collisionless plasma consisting of isothermal positrons, warm adiabatic ions and two-temperature distribution of electrons are investigated. Using the pseudo-potential approach, an energy-integral equation for the system has been derived which encompasses complete nonlinearity for the plasma system. The existence region of the double layers is analyzed numerically. It is found that for a selected set of physical parameters, the rarefactive double layer exists in the electron–positron–ion plasma. It is found that the existence regime of the double layer is very sensitive to the plasma parameters, e.g. cold electron concentration (μ) and temperature ratio of two electron species (β). An increase in the finite ion temperature ratio increases the amplitude of the rarefactive double layer. To study small-amplitude double layers, we have expanded the Sagdeev potential. In the case of small amplitude, it is found that the amplitude of the double layer increases with increase in ion temperature ratio (σ) and cold electron concentration (μ). However increase in positron concentration (α) and temperature ratio of positrons to electrons (γ) decreases the amplitude of the double layer. The effect of various plasma parameters on the characteristics of the double layers is discussed in detail. The results of the investigation may be helpful to understanding basic plasma characteristics in space.


2003 ◽  
Vol 10 (1/2) ◽  
pp. 87-92 ◽  
Author(s):  
R. Pottelette ◽  
R. A. Treumann ◽  
M. Berthomier ◽  
J. Jasperse

Abstract. The auroral kilometric radiation (AKR) consists of a large number of fast drifting elementary radiation events that have been interpreted as travelling electron holes resulting from the nonlinear evolution of electron-acoustic waves. The elementary radiation structures sometimes become reflected or trapped in slowly drifting larger structures where the parallel electric fields are located. These latter features have spectral frequency drifts which can be interpreted in terms of the propagation of shock-like disturbances along the auroral field line at velocities near the ion-acoustic speed. The amplitude, speed, and shock width of such localized ion-acoustic shocks are determined here in the fluid approximation from the Sagdeev potential, assuming realistic plasma parameters. It is emphasized that the electrostatic potentials of such nonlinear structures contribute to auroral acceleration.


Sign in / Sign up

Export Citation Format

Share Document