electron holes
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 56)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 34 (1) ◽  
Author(s):  
Adewumi Olufemi Oluwole ◽  
Olatunde Stephen Olatunji

Abstract Background Pharmaceuticals is one of the groups of contaminants of emerging concern that are resistant to decomposition or removal by most of the existing water and wastewater treatment procedures, hence the need to develop techniques to facilitate the removals of this group of organic contaminants from water systems. In this study, needle-like SnO2 nanoparticles was synthesised and loaded on exfoliated g-C3N4 nanosheet through a hydrothermal method, for use as sensitive visible light induce-photocatalyst for the decomposition of tetracycline in aqueous systems. The synthesised composites was characterized and analysed for the nature of the heterojunction between the SnO2 nanoparticle and g-C3N4 nanosheet using microscopic and spectroscopic techniques. Results The composites were of improved surface properties and enhanced visible-light absorption. The synthesised SnO2/g-C3N4 nanocomposites with various amounts of SnO2 (10–50 mg), employed in the degradation of tetracycline under visible light irradiation, were of good degradation efficiency. The degradation efficiencies of tetracycline by 1 wt.%, 2 wt.%, 3 wt.% and 5 wt.% SnO2/g-C3N4 photocatalyst were 81.54%, 90.57%, 95.90% and 92.15% as compared to g-C3N4 and SnO2 with 40.92% and 51.32% degradation efficiencies. The synergistic interaction between the needle-like SnO2 and exfoliated g-C3N4 nanosheet promoted the separation of photogenerated electron holes pairs, which enhanced their migration rate between SnO2 and g-C3N4 heterojunction, thereby facilitating the degradation of tetracycline. The ·O2− was noted to be the major reactive species in the photocatalytic of the 3 wt.% SnO2/g-C3N4 nanocomposite. Conclusion The fabricated SnO2 nanoparticles anchored on exfoliated g-C3N4 showed good performance for the decomposition of tetracycline in water, with possible application on other pharmaceuticals having same moiety (similar chemical structures).


Author(s):  
Jun Hyuk Kim ◽  
Jaewoon Hong ◽  
Dae-Kwang Lim ◽  
Sejong Ahn ◽  
Jinwook Kim ◽  
...  

Single-phase materials with mixed ionic and electronic conductivity underpin multiple solid-state electrochemical devices as promising electrodes. In particular, triple-conducting oxides that carry protons, oxygen ions, and electron holes simultaneously have...


2021 ◽  
Vol 22 (24) ◽  
pp. 13436
Author(s):  
Evangelos Balanikas ◽  
Lara Martinez-Fernandez ◽  
Gérard Baldacchino ◽  
Dimitra Markovitsi

The study deals with four-stranded DNA structures (G-Quadruplexes), known to undergo ionization upon direct absorption of low-energy UV photons. Combining quantum chemistry calculations and time-resolved absorption spectroscopy with 266 nm excitation, it focuses on the electron holes generated in tetramolecular systems with adenine groups at the ends. Our computations show that the electron hole is placed in a single guanine site, whose location depends on the position of the adenines at the 3′ or 5′ ends. This position also affects significantly the electronic absorption spectrum of (G+)● radical cations. Their decay is highly anisotropic, composed of a fast process (<2 µs), followed by a slower one occurring in ~20 µs. On the one hand, they undergo deprotonation to (G-H2)● radicals and, on the other, they give rise to a reaction product absorbing in the 300–500 nm spectral domain.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3347
Author(s):  
Yali Guo ◽  
Anzhou Xu ◽  
Juan Hou ◽  
Qingcui Liu ◽  
Hailong Li ◽  
...  

Ag–Au core–shell triangular nanoprisms (Ag@Au TNPs) have aroused extensive research interest in the field of hydrogen evolution reaction (HER) due to their strong plasmon effect and stability. Here, Ag@Au TNPs were fabricated by the galvanic-free replacement method. Then, we loaded them on protonated g-C3N4 nanoprisms (P–CN) by the electrostatic self-assembly method as an efficient plasmonic photocatalyst for HER. The hydrogen production rate of Ag@Au TNPs/P–CN (4.52 mmol/g/h) is 4.1 times higher than that of P–CN (1.11 mmol/g/h) under simulated sunlight irradiation, making it the most competitive material for water splitting. The formed Schottky junction helps to trap the hot electrons generated from Ag@Au TNPs, and the well-preserved tips of the Ag@Au TNPs can effectively generate an electromagnetic field to inhibit the photogenerated electron–holes pairs recombination. This study suggests that the rational design of Ag@Au TNPs by the galvanic-free replacement method is an effective co-catalyst for HER and boosting the additional combination of plasmonic metals and catalyst metals for the enhancement to HER.


Author(s):  
Ali Jabbar Fraih ◽  
Zainab Ali Harbeh

In this paper, the molybdenum disulfide (MoS2)/copper oxide (CuO) heterostructure is introduced in a very simple way for photoelectrochemical application. MoS2 multilayers were prepared by sonication method and decorated with copper oxide nanoparticles through its thin film deposition layer and heating in argon atmosphere. SEM, TEM, AFM, absorption and Raman analyses were employed to characterize the nanostructures. The results show that the presence of copper oxide nanoparticles reduces the recombination rate of photogenerated electron-holes in MoS2 multilayers and produces a significant photocurrent compared to the individual MoS2 electrode. Such a proposed structure demonstrates a high potential for photoelectrochemical applications.


Author(s):  
Huayang Zhu ◽  
Sandrine Ricote ◽  
Robert J Kee

Abstract Proton-conducting ceramics (e.g., doped barium zirconates or cerates) are typically mixed ionic-electronic conductors (MIEC). The electronic conduction, typically in the form of positively charged small polarons or electron holes, leads to “electronic leakage.” In an ideal steam-electrolysis cell, one gas-phase H2 molecule is produced from every two electrons delivered from an external power source. In other words, such ideal behavior achieves 100% faradaic efficiency. However, the electronic flux associated with MIEC membranes contributes to reduced faradaic efficiency. The present paper develops a model that predicts the behavior of faradaic efficiency as a function of electrolysiscell operating conditions. Although the model framework is more general, the paper focuses on the behavior of a cell based upon a BaCe0.7Zr0.1Y0.1Yb0.1O3−δ (BCZYYb) membrane. The study predicts the effects of operating conditions, including temperature, pressure, and gas compositions.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5479
Author(s):  
Andrey Yu. Sosorev

Despite several decades of research, the physics underlying translation—protein synthesis at the ribosome—remains poorly studied. For instance, the mechanism coordinating various events occurring in distant parts of the ribosome is unknown. Very recently, we suggested that this allosteric mechanism could be based on the transport of electric charges (electron holes) along RNA molecules and localization of these charges in the functionally important areas; this assumption was justified using tRNA as an example. In this study, we turn to the ribosome and show computationally that holes can also efficiently migrate within the whole ribosomal small subunit (SSU). The potential sites of charge localization in SSU are revealed, and it is shown that most of them are located in the functionally important areas of the ribosome—intersubunit bridges, Fe4S4 cluster, and the pivot linking the SSU head to its body. As a result, we suppose that hole localization within the SSU can affect intersubunit rotation (ratcheting) and SSU head swiveling, in agreement with the scenario of electronic coordination of ribosome operation. We anticipate that our findings will improve the understanding of the translation process and advance molecular biology and medicine.


2021 ◽  
Author(s):  
Lixin He ◽  
Siqi Sun ◽  
Pengfei Lan ◽  
Yanqing He ◽  
Bincheng Wang ◽  
...  

Abstract Electron migration in molecules is the progenitor of chemical reactions and biological functions after light-matter interaction. Following this ultrafast dynamics, however, has been an enduring endeavor. Recently, it has been suggested that high-harmonic spectroscopy (HHS) is able to probe dynamics with attosecond temporal and sub-˚angstr¨om spatial resolution. Still, real-time visualization of single-molecule dynamics continues to be a great challenge because experimental harmonic spectra are due to the coherent averages of light emission from individual molecules of different alignments. Here we demonstrate that the uniting of machine learning (ML) algorithm and HHS in two-color laser pulses enables us to retrieve the complex amplitude and phase of harmonics from single fixed-in-space molecule. From the complex single-molecule dipoles for different harmonics, we construct a movie of electron migration after tunnel ionization of the molecules at time steps of 50 attoseconds. Moreover, the angular dependence of molecular charge migration is fully resolved. By examining the movie, we observe that electron holes do not just “migrate” along the laser direction, but may “swirl” around the atom centers. Our ML-based HHS establishes a general reconstruction scheme for studying ultrafast charge migration in molecules, paving a way for further advance in tracing and controlling photochemical reactions by femtosecond lasers.


2021 ◽  
Vol 22 (16) ◽  
pp. 8696
Author(s):  
Wojciech Baran ◽  
Mateusz Cholewiński ◽  
Andrzej Sobczak ◽  
Ewa Adamek

The mechanism of sulfisoxazole (SFF) selective removal by photocatalysis in the presence of titanium (IV) oxide (TiO2) and iron (III) chloride (FeCl3) was explained and the kinetics and degradation pathways of SFF and other antibiotics were compared. The effects of selected inorganic ions, oxygen conditions, pH, sorption processes and formation of coordination compounds on the photocatalytic process in the presence of TiO2 were also determined. The Fe3+ compounds added to the irradiated sulfonamide (SN) solution underwent surface sorption on TiO2 particles and act as acceptors of excited electrons. Most likely, the SFF degradation is also intensified by organic radicals or cation organic radicals. These radicals can be initially generated by reaction with electron holes, hydroxyl radicals and as a result of electron transfer mediated by iron ions and then participate in propagation processes. The high sensitivity of SFF to decomposition caused by organic radicals is associated with the steric effect and the high bond polarity of the amide substituent.


Sign in / Sign up

Export Citation Format

Share Document