dust grain
Recently Published Documents


TOTAL DOCUMENTS

370
(FIVE YEARS 76)

H-INDEX

37
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Xuebang Gao ◽  
Li Xie

Abstract. Sandy dust weather occur frequently in arid and semi-arid areas. It is important to actually detect the sandy dust grain concentration or the visibility of the sandy dust weather for weather forecasting. In this paper, based on numerical calculation of the effective detection distance of different radar detecting the sandy-dust weather with different strength, a scheme to detect sand/dust weather applying existed meteorological radar stations is proposed in this paper. The scheme can be efficient to detect sandy dust weather, for it makes a good supplement to the current deficiencies in detecting sandy dust weather and it’s a cost-saving detection way by using the existed meteorological radars. In addition, the effect of charges carried by sand/dust grains and the relative humidity on the effective detection distance of radar is also investigated, and it shows that these effects will not change the proposed scheme. It will be promising to detect the sandy dust weather in the way of disastrous weather precaution by using this scheme.


2021 ◽  
Vol 923 (2) ◽  
pp. 270
Author(s):  
Hauyu Baobab Liu ◽  
An-Li Tsai ◽  
Wen Ping Chen ◽  
Jin Zhong Liu ◽  
Xuan Zhang ◽  
...  

Abstract Previous observations have shown that the ≲10 au, ≳400 K hot inner disk of the archetypal accretion outburst young stellar object, FU Ori, is dominated by viscous heating. To constrain dust properties in this region, we have performed radio observations toward this disk using the Karl G. Jansky Very Large Array in 2020 June–July, September, and November. We also performed complementary optical photometric monitoring observations. We found that the dust thermal emission from the hot inner disk mid-plane of FU Ori has been approximately stationary and the maximum dust grain size is ≳1.6 mm in this region. If the hot inner disk of FU Ori, which is inward of the 150–170 K water snowline, is turbulent (e.g., corresponding to a Sunyaev & Shakura viscous α t ≳ 0.1), or if the actual maximum grain size is still larger than the lower limit we presently constrain, then as suggested by the recent analytical calculations and the laboratory measurements, water-ice-free dust grains may be stickier than water-ice-coated dust grains in protoplanetary disks. Additionally, we find that the free–free emission and the Johnson B- and V-band magnitudes of these binary stars were brightening in 2016–2020. The optical and radio variability might be related to the dynamically evolving protostellar- or disk-accretion activities. Our results highlight that the hot inner disks of outbursting objects are important laboratories for testing models of dust grain growth. Given the active nature of such systems, to robustly diagnose the maximum dust grain sizes, it is important to carry out coordinated multiwavelength radio observations.


2021 ◽  
Vol 923 (2) ◽  
pp. 159
Author(s):  
Germán Molpeceres ◽  
Juan García de la Concepción ◽  
Izaskun Jiménez-Serra

Abstract With the presence of evermore complex S-bearing molecules being detected lately, studies of their chemical formation routes need to keep up the pace to rationalize observations, suggest new candidates for detection, and provide input for chemical evolution models. In this paper, we theoretically characterize the hydrogenation channels of OCS on top of amorphous solid water (ASW) as an interstellar dust grain analog in molecular clouds. Our results show that the significant reaction outcome is trans-HC(O)SH, a recently detected prebiotic molecule toward G+0.693. The reaction is diastereoselective, explaining the apparent absence of the cis isomer in astronomical observations. We found that the reaction proceeds through a highly localized radical intermediate (cis-OCSH), which could be essential in the formation of other sulfur-bearing complex organic molecules due to its slow isomerization dynamics on top of ASW.


2021 ◽  
pp. 111640
Author(s):  
Alphonse Houwe ◽  
Souleymanou Abbagari ◽  
Mustafa Inc ◽  
Gambo Betchewe ◽  
Serge Y. Doka ◽  
...  

2021 ◽  
Vol 923 (1) ◽  
pp. L9
Author(s):  
Yasuo Doi ◽  
Kohji Tomisaka ◽  
Tetsuo Hasegawa ◽  
Simon Coudé ◽  
Doris Arzoumanian ◽  
...  

Abstract We investigate the internal 3D magnetic structure of dense interstellar filaments within NGC 1333 using polarization data at 850 μm from the B-fields In STar-forming Region Observations survey at the James Clerk Maxwell Telescope. Theoretical models predict that the magnetic field lines in a filament will tend to be dragged radially inward (i.e., pinched) toward the central axis due to the filament’s self-gravity. We study the cross-sectional profiles of the total intensity (I) and polarized intensity (PI) of dust emission in four segments of filaments unaffected by local star formation that are expected to retain a pristine magnetic field structure. We find that the filaments’ FWHMs in PI are not the same as those in I, with two segments being appreciably narrower in PI (FWHM ratio ≃0.7–0.8) and one segment being wider (FWHM ratio ≃1.3). The filament profiles of the polarization fraction (P) do not show a minimum at the spine of the filament, which is not in line with an anticorrelation between P and I normally seen in molecular clouds and protostellar cores. Dust grain alignment variation with density cannot reproduce the observed P distribution. We demonstrate numerically that the I and PI cross-sectional profiles of filaments in magnetohydrostatic equilibrium will have differing relative widths depending on the viewing angle. The observed variations of FWHM ratios in NGC 1333 are therefore consistent with models of pinched magnetic field structures inside filaments, especially if they are magnetically near-critical or supercritical.


J ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 838-848
Author(s):  
Marcello Abbrescia ◽  
Carlo Avanzini ◽  
Luca Baldini ◽  
Rinaldo Baldini Ferroli ◽  
Giovanni Batignani ◽  
...  

The existence of independent, yet time correlated, Extensive Air Showers (EAS) has been discussed over the past years, with emphasis on possible physical mechanisms that could justify their observation. The detector network of the Extreme Energy Events (EEE) Collaboration, with its approximately 60 cosmic ray telescopes deployed over the Italian territory, has the potential to search for such events, employing different analysis strategies. In this paper, we have analyzed a set of EEE data, corresponding to an approximately five month observation period, searching for multi-coincidence events among several far telescopes, within a time window of 1 ms. Events with up to 12 coincident telescopes have been observed. Results were compared to expectations from a random distribution of events and discussed with reference to the relativistic dust grain hypothesis.


2021 ◽  
Vol 921 (2) ◽  
pp. 182
Author(s):  
Anneliese M. Rilinger ◽  
Catherine C. Espaillat

Abstract We present the largest sample of brown dwarf (BD) protoplanetary disk spectral energy distributions modeled to date. We compile 49 objects with ALMA observations from four star-forming regions: ρ Ophiuchus, Taurus, Lupus, and Upper Scorpius. Studying multiple regions with various ages enables us to probe disk evolution over time. Specifically, from our models, we obtain values for dust grain sizes, dust settling, and disk mass; we compare how each of these parameters vary between the regions. We find that disk mass decreases with age. We also find evidence of disk evolution (i.e., grain growth and significant dust settling) in all four regions, indicating that planet formation and disk evolution may begin to occur at earlier stages. We generally find that these disks contain too little mass to form planetary companions, though we cannot rule out that planet formation may have already occurred. Finally, we examine the disk mass–host mass relationship and find that BD disks are largely consistent with previously determined relationships for disks around T Tauri stars.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tim Jacobus Adrianus Staps ◽  
Marvin Igor van de Ketterij ◽  
Bart Platier ◽  
Job Beckers

AbstractDusty plasmas comprise a complex mixture of neutrals, electrons, ions and dust grains, which are found throughout the universe and in many technologies. The complexity resides in the chemical and charging processes involving dust grains and plasma species, both of which impact the collective plasma behavior. For decades, the orbital-motion-limited theory is used to describe the plasma charging of dust grains, in which the electron current is considered collisionless. Here we show that the electron (momentum transfer) collision frequency exceeds the electron plasma frequency in a powder-forming plasma. This indicates that the electron current is no longer collisionless, and the orbital-motion-limited theory may need corrections to account for elastic electron collisions. This implication is especially relevant for higher gas pressure, lower plasma density, and larger dust grain size and density.


2021 ◽  
Vol 256 (1) ◽  
pp. 17
Author(s):  
O. Muñoz ◽  
E. Frattin ◽  
T. Jardiel ◽  
J. C. Gómez-Martín ◽  
F. Moreno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document