scholarly journals Millisecond Pulsar Formation and Evolution

1987 ◽  
Vol 125 ◽  
pp. 393-406 ◽  
Author(s):  
E.P.J. van den Heuvel

The evolutionary history of binary radio pulsars, including the two millisecond binary pulsars, is reviewed. There are two groups of binary pulsars, the PSR 1913+16-group, which descended from massive X-ray binaries, and the PSR 1953+29-group, which descended from fairly wide low-mass X-ray binaries. The neutron stars in the second group probably formed by the accretion-induced collapse of a massive white dwarf. The companion stars in both groups of systems are expected to be dead stars, i.e. white dwarfs or neutron stars.The large total number of millisecond binary pulsars in the galaxy (∼ 104), indicates that magnetic fields of neutron stars do not decay below a value of order 109 G. Possible explanations for this phenomenon are discussed.Coalescence with a close degenerate companion provides a viable model for the formation of the single millisecond pulsar.

2012 ◽  
Vol 8 (S291) ◽  
pp. 499-501
Author(s):  
Yong Shao ◽  
Xiang-Dong Li

AbstractWe present a systematic study of the evolution of intermediate- and low-mass X-ray binaries. Our calculations suggest that millisecond binary pulsars in wide orbits might have neutron stars born massive, or been formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution.


1987 ◽  
Vol 125 ◽  
pp. 383-392
Author(s):  
J. H. Taylor

The Galaxy contains a large number of neutron stars in gravitation-ally bound binary systems. Among the most fruitful of these to study have been the binary radio pulsars, of which seven are now known. Unlike the “accretion-powered” neutron stars located in mass-exchanging X-ray binary systems, the “rotation-powered” binary radio pulsars are found in dynamically simple, clean systems in which both stellar components have already completed their nuclear evolution, thereby shedding their atmospheres and most of their mass. In such circumstances the orbital parameters of the system and the rotational parameters of the pulsar can be determined with high precision from analysis of pulse timing data. These measurements constrain the component masses and yield an estimate of the pulsar's magnetic dipole moment, which turns out to be an essential parameter in understanding the evolution of the systems. In this paper I review the known facts concerning binary pulsars, and then briefly discuss some implications for our understanding of the place of neutron stars in stellar evolution.


Author(s):  
Yunus Emre Bahar ◽  
Manoneeta Chakraborty ◽  
Ersin Göğüş

Abstract We present the results of our extensive binary orbital motion corrected pulsation search for 13 low-mass X-ray binaries. These selected sources exhibit burst oscillations in X-rays with frequencies ranging from 45 to 1 122 Hz and have a binary orbital period varying from 2.1 to 18.9 h. We first determined episodes that contain weak pulsations around the burst oscillation frequency by searching all archival Rossi X-ray Timing Explorer data of these sources. Then, we applied Doppler corrections to these pulsation episodes to discard the smearing effect of the binary orbital motion and searched for recovered pulsations at the second stage. Here we report 75 pulsation episodes that contain weak but coherent pulsations around the burst oscillation frequency. Furthermore, we report eight new episodes that show relatively strong pulsations in the binary orbital motion corrected data.


1987 ◽  
Vol 125 ◽  
pp. 67-78
Author(s):  
Ramesh Narayan

The radio pulsars in the Galaxy are found predominantly in the disk, with a scale height of several hundred parsecs. After allowing for pulsar velocities, the data are consistent with the hypothesis that single pulsars form from massive stellar progenitors. The number of active single pulsars in the Galaxy is ∼ 1.5 × 105, and their birthrate is 1 per ∼ 60 yrs. There is some evidence that many single pulsars, particularly those with high magnetic fields, are born spinning slowly, with initial periods ∼ 0.5–1s. This could imply an origin through binary “recycling” followed by orbit disruption, or might suggest that the pre-supernova stellar core efficiently loses angular momentum to the envelope through magnetic coupling. The birthrate of binary radio pulsars, particularly of the millisecond variety, seems to be much larger than previous estimates, and might suggest that these systems do not originate in low mass X-ray binary systems.


2007 ◽  
Vol 469 (2) ◽  
pp. 807-810 ◽  
Author(s):  
Q. Z. Liu ◽  
J. van Paradijs ◽  
E. P. J. van den Heuvel

2004 ◽  
Vol 194 ◽  
pp. 128-129
Author(s):  
Włodek Kluźniak

AbstractNon-linear oscillations in the accretion disk are favored as an explanation of high-frequency QPOs observed in the light curves of low-mass X-ray binaries containing neutron stars, black holes, or white dwarfs.


2015 ◽  
Vol 577 ◽  
pp. A5 ◽  
Author(s):  
A. Turlione ◽  
D. N. Aguilera ◽  
J. A. Pons

1984 ◽  
Vol 80 ◽  
pp. 335-354
Author(s):  
C. De Loore ◽  
W. Sutantyo

AbstractClose binaries can evolve through various ways of interaction into compact objects (white dwarfs, neutron stars, black holes). Massive binary systems (mass of the primary M1 larger than 14 to 15 M0) are expected to leave, after the first stage of mass transfer a compact component orbiting a massive star. These systems evolve during subsequent stages into massive X-ray binaries. Systems with initial large periode evolve into Be X-ray binaries.Low mass X-ray sources are probably descendants of lower mass stars, and various channels for their production are indicated. The evolution of massive close binaries is examined in detail and different X-ray stages are discussed. It is argued that a first X-ray stage is followed by a reverse extensive mass transfer, leading to systems like SS433, CirXl. During further evolution these systems would become Wolf-Rayet runaways. Due to spiral in these system would then further evolve into ultra short X-ray binaries like CygX-3.Finally the explosion of the secondary will in most cases disrupt the system. In an exceptional case the system remains bound, leading to binary pulsars like PSR 1913 +16. In such systems the orbit will shrink due to gravitational radiation and finally the two neutron stars will coalesce. It is argued that the millisecond pulsar PSR 1937 + 214 could be formed in this way.A complete scheme starting from two massive ZAMS stars, ending with a millisecond pulsar is presented.


1999 ◽  
Vol 192 ◽  
pp. 100-103
Author(s):  
A. P. Cowley ◽  
P. C. Schmidtke ◽  
V. A. Taylor ◽  
T.K. McGrath ◽  
J. B. Hutchings ◽  
...  

In this study we compare the global populations of stellar X-ray sources in the LMC, SMC, and the Galaxy. After removing foreground stars and background AGN from the samples, the relative numbers of the various types of X-ray point sources within the LMC and SMC are similar, but differ markedly from those in the Galaxy. The Magellanic Clouds are rich in high-mass X-ray binaries (HMXB), especially those containing rapidly rotating Be stars. However, the LMC and SMC both lack the large number of low-mass X-ray binaries (LMXB) found in the Milky Way, which are known to represent a very old stellar population based on their kinematics, chemical composition, and spatial distribution.


Sign in / Sign up

Export Citation Format

Share Document