radio pulsars
Recently Published Documents


TOTAL DOCUMENTS

528
(FIVE YEARS 59)

H-INDEX

45
(FIVE YEARS 6)

Author(s):  
Michael Kramer

We experience a golden era in testing and exploring relativistic gravity. Whether it is results from gravitational-wave detectors, satellite or lab experiments, radio astronomy plays an important complementary role. Here, one can mention the cosmic microwave background, black hole imaging and, obviously, binary pulsars. This talk will concentrate on the latter and new results from studies of strongly self-gravitating bodies with unrivalled precision. This presentation compares the results to other methods, discusses implications for other areas of relativistic astrophysics and will give an outlook of what we can expect from new instruments in the near future.


2022 ◽  
Vol 21 (12) ◽  
pp. 314
Author(s):  
Shan-Ping You ◽  
Pei Wang ◽  
Xu-Hong Yu ◽  
Xiao-Yao Xie ◽  
Di Li ◽  
...  

Abstract We developed a GPU based single-pulse search pipeline (GSP) with a candidate-archiving database. Largely based upon the infrastructure of the open source PulsaR Exploration and Search Toolkit (PRESTO), GSP implements GPU acceleration of the de-dispersion and integrates a candidate-archiving database. We applied GSP to the data streams from the Commensal Radio Astronomy FAST Survey (CRAFTS), which resulted in quasi-real-time processing. The integrated candidate database facilitates synergistic usage of multiple machine-learning tools and thus improves efficient identification of radio pulsars such as rotating radio transients (RRATs) and fast radio bursts (FRBs). We first tested GSP on pilot CRAFTS observations with the FAST Ultra-Wide Band (UWB) receiver. GSP detected all pulsars known from the the Parkes multibeam pulsar survey in the corresponding sky area covered by the FAST-UWB. GSP also discovered 13 new pulsars. We measured the computational efficiency of GSP to be ∼120 times faster than the original PRESTO and ∼60 times faster than an MPI-parallelized version of PRESTO.


2021 ◽  
Vol 65 (11) ◽  
pp. 1129-1135
Author(s):  
M. V. Popov ◽  
T. V. Smirnova

Abstract We have analyzed two-dimensional correlation functions from the dynamic spectra of 11 pulsars using the archival data of the “Radioastron” project. The time-sections of these functions were approximated by exponential functions with a power $$\alpha $$. It is shown that this approximation describes the shape of the correlation function much better than the Gaussian. The temporal structure function $$D(\Delta t)$$ for small values of the delay $$\Delta t$$is a power law with an index $$\alpha $$. The spectrum power of spatial inhomogeneities of the interstellar plasma is related to the power of the structure function as $$n = \alpha + 2$$. We have determined the characteristic scintillation time and the power $$n$$ in the direction of 11 pulsars. In the direction of three pulsars (B0329+54, B0823+26, and B1929+10), the spectrum power of spatial inhomogeneities of the interstellar plasma turned out to be very close to the value for the Kolmogorov spectrum ($$n = 3.67$$). For other pulsars, it ranges from 3.18 to 3.86. It is shown that the measured scintillation parameters are significantly influenced by the duration of the observation session, expressed by its ratio to the characteristic scintillation time. If this parameter is less than 10, the parameter estimates may be biased: the values of $$\alpha $$ and the characteristic scintillation time $${{t}_{{{\text{scint}}}}}$$ may decrease.


2021 ◽  
Vol 922 (1) ◽  
pp. 14
Author(s):  
Peter T. H. Pang ◽  
Ingo Tews ◽  
Michael W. Coughlin ◽  
Mattia Bulla ◽  
Chris Van Den Broeck ◽  
...  

Abstract In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4 M ⊙, probing densities up to ∼three to four times the nuclear saturation density. Even higher densities are probed inside massive NSs such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620, and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear physics multimessenger astrophysics constraints and derive updated constraints on the EOS describing the NS interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT 2017gfo, and the gamma-ray burst GRB 170817A, we are able to estimate the radius of a typical 1.4 M ⊙ NS to be 11.94 − 0.87 + 0.76 km at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of NSs and disfavors the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside NSs.


Author(s):  
B Posselt ◽  
A Karastergiou ◽  
S Johnston ◽  
A Parthasarathy ◽  
M J Keith ◽  
...  

Abstract We present pulse width measurements for a sample of radio pulsars observed with the MeerKAT telescope as part of the Thousand-Pulsar-Array (TPA) programme in the MeerTime project. For a centre frequency of 1284 MHz, we obtain 762 W10 measurements across the total bandwidth of 775 MHz, where W10 is the width at the 10 per cent level of the pulse peak. We also measure about 400 W10 values in each of the four or eight frequency sub-bands. Assuming, the width is a function of the rotation period P, this relationship can be described with a power law with power law index μ = −0.29 ± 0.03. However, using orthogonal distance regression, we determine a steeper power law with μ = −0.63 ± 0.06. A density plot of the period-width data reveals such a fit to align well with the contours of highest density. Building on a previous population synthesis model, we obtain population-based estimates of the obliquity of the magnetic axis with respect to the rotation axis for our pulsars. Investigating the width changes over frequency, we unambiguously identify a group of pulsars that have width broadening at higher frequencies. The measured width changes show a monotonic behaviour with frequency for the whole TPA pulsar population, whether the pulses are becoming narrower or broader with increasing frequency. We exclude a sensitivity bias, scattering and noticeable differences in the pulse component numbers as explanations for these width changes, and attempt an explanation using a qualitative model of five contributing Gaussian pulse components with flux density spectra that depend on their rotational phase.


Author(s):  
Andrei P Igoshev ◽  
Martyna Chruslinska ◽  
Andris Dorozsmai ◽  
Silvia Toonen

Abstract Supernova explosion and the associated neutron star natal kicks are important events on a pathway of a binary to become a gravitational wave source, an X-ray binary or a millisecond radio pulsar. Weak natal kicks often lead to binary survival, while strong kicks frequently disrupt the binary. In this article, we aim to further constrain neutron star natal kicks in binaries. We explore binary population synthesis models by varying prescription for natal kick, remnant mass and mass accretion efficiency. We introduce a robust statistical technique to analyse combined observations of different nature. Using this technique, we further test different models using parallax and proper motion measurements for young isolated radio pulsars and similar measurements for Galactic Be X-ray binaries. Our best model for natal kicks is consistent with both measurements and contains a fraction of w = 0.2 ± 0.1 weak natal kicks with $\sigma _1 = 45^{+25}_{-15}$ km s−1, the remaining natal kicks are drawn from the high-velocity component, same as in previous works: σ2 = 336 km s−1. We found that currently used models for natal kicks of neutron stars produced by electron capture supernova (combination of maxwellian σ = 265 km s−1 and σ = 30 km s−1 for electron capture) are inconsistent or marginally consistent with parallaxes and proper motions measured for isolated radio pulsars. We suggest a new model for natal kicks of ecSN, which satisfy both observations of isolated radio pulsars and Be X-ray binaries.


2021 ◽  
Vol 508 (1) ◽  
pp. 279-286
Author(s):  
Xiang-Han Cui ◽  
Cheng-Min Zhang ◽  
Di Li ◽  
Jian-Wei Zhang ◽  
Bo Peng ◽  
...  

ABSTRACT The properties of the young pulsars and their relations to the supernova remnants (SNRs) have been the interesting topics. At present, 383 SNRs in the Milky Way Galaxy have been published, which are associated with 64 radio pulsars and 46 pulsars with high-energy emissions. However, we noticed that 630 young radio pulsars with the spin periods of less than half a second have been not yet observed the SNRs surrounding or nearby them, which arises a question of that could the two types of young radio pulsars with/without SNRs hold the distinctive characteristics? Here, we employ the statistical tests on the two groups of young radio pulsars with (52) and without (630) SNRs to reveal if they share the different origins. Kolmogorov–Smirnov (K–S) and Mann–Whitney–Wilcoxon (M–W–W) tests indicate that the two samples have the different distributions with parameters of spin period (P), derivative of spin period ($\dot{P}$), surface magnetic field strength (B), and energy loss rate ($\dot{E}$). Meanwhile, the cumulative number ratio between the pulsars with and without SNRs at the different spin-down ages decreases significantly after $\rm 10\!-\!20\, kyr$. So we propose that the existence of the two types of supernovae (SNe), corresponding to their SNR lifetimes, which can be roughly ascribed to the low- and high-energy SNe. Furthermore, the low-energy SNe may be formed from the $\rm 8\!-\!12\, M_{\odot }$ progenitor, e.g. possibly experiencing the electron capture, while the main-sequence stars of $\rm 12\!-\!25\, M_{\odot }$ may produce the high-energy SNe probably by the iron core collapse.


2021 ◽  
Vol 21 (7) ◽  
pp. 154
Author(s):  
Hong-Yi Liu ◽  
Shi-Qi Zhou ◽  
Yu-Qi Zhang ◽  
Zhong-Wen Feng ◽  
Xia Zhou
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document