scholarly journals Finding Ages for Old Stellar Populations

1996 ◽  
Vol 171 ◽  
pp. 71-74 ◽  
Author(s):  
Guy Worthey

We are far from being able to populate a histogram of star formation versus time for an elliptical galaxy based solely on observations of its spectrum, but the path toward such a dream is becoming more clear. Still, we are denied the easiest paths, and most of what I have been thinking about in the last six months are the obstacles rather than the opportunities in age determinations for old stellar populations, and Es in particular. The following list should illustrate what I mean.

2008 ◽  
Vol 4 (S258) ◽  
pp. 61-72
Author(s):  
Monica Tosi

AbstractThe colour-magnitude diagrams of resolved stellar populations are the best tool to study the star formation histories of the host galactic regions. In this review the method to derive star formation histories by means of synthetic colour-magnitude diagrams is briefly outlined, and the results of its application to resolved galaxies of various morphological types are summarized. It is shown that all the galaxies studied so far were already forming stars at the lookback time reached by the observational data, independently of morphological type and metallicity. Early-type galaxies have formed stars predominantly, but in several cases not exclusively, at the earliest epochs. All the other galaxies appear to have experienced rather continuous star formation activities throughout their lifetimes, although with significant rate variations and, sometimes, short quiescent phases.


2018 ◽  
Vol 867 (2) ◽  
pp. 118 ◽  
Author(s):  
Keunho Kim ◽  
Sangeeta Malhotra ◽  
James E. Rhoads ◽  
Bhavin Joshi ◽  
Ignacio Fererras ◽  
...  

2020 ◽  
Vol 501 (1) ◽  
pp. 1046-1058
Author(s):  
Valeria Mesa ◽  
Sol Alonso ◽  
Georgina Coldwell ◽  
Diego García Lambas ◽  
J L Nilo Castellon

ABSTRACT We use SDSS-DR14 to construct a sample of galaxy systems consisting of a central object and two satellites. We adopt projected distance and radial velocity difference criteria and impose an isolation criterion to avoid membership in larger structures. We also classify the interaction between the members of each system through a visual inspection of galaxy images, finding ${\sim}80{{\ \rm per\ cent}}$ of the systems lack evidence of interactions whilst the remaining ${\sim}20{{\ \rm per\ cent}}$ involve some kind of interaction, as inferred from their observed distorted morphology. We have considered separately, samples of satellites and central galaxies, and each of these samples were tested against suitable control sets to analyse the results. We find that central galaxies showing signs of interactions present evidence of enhanced star formation activity and younger stellar populations. As a counterpart, satellite samples show these galaxies presenting older stellar populations with a lower star formation rate than the control sample. The observed trends correlate with the stellar mass content of the galaxies and with the projected distance between the members involved in the interaction. The most massive systems are less affected since they show no star formation excess, possibly due to their more evolved stage and less gas available to form new stars. Our results suggest that it is arguably a transfer of material during interactions, with satellites acting as donors to the central galaxy. As a consequence of the interactions, satellite stellar population ages rapidly and new bursts of star formation may frequently occur in the central galaxy.


2012 ◽  
Vol 8 (S295) ◽  
pp. 191-199
Author(s):  
Carlton M. Baugh

AbstractMassive galaxies with old stellar populations have been put forwards as a challenge to models in which cosmic structures grow hierarchically through gravitational instability. I will explain how the growth of massive galaxies is helped by features of hierarchical models. I give a brief outline of how the galaxy formation process is modelled in hierarchical cosmologies using semi-analytical models, and illustrate how these models can be refined as our understanding of processes such as star formation improves. I then present a brief survey of the current state of play in the modelling of massive galaxies and list some outstanding challenges.


2015 ◽  
Vol 802 (1) ◽  
pp. 70
Author(s):  
P. N. Appleton ◽  
C. Mundell ◽  
T. Bitsakis ◽  
M. Lacy ◽  
K. Alatalo ◽  
...  

2018 ◽  
Vol 14 (S344) ◽  
pp. 77-80
Author(s):  
Seyed Azim Hashemi ◽  
Atefeh Javadi ◽  
Jacco Th. van Loon

AbstractDetermining the star formation history (SFH) is key to understand the formation and evolution of dwarf galaxies. Recovering the SFH in resolved galaxies is mostly based on deep colour–magnitude diagrams (CMDs), which trace the signatures of multiple evolutionary stages of their stellar populations. In distant and unresolved galaxies, the integrated light of the galaxy can be decomposed, albeit made difficult by an age–metallicity degeneracy. Another solution to determine the SFH of resolved galaxies is based on evolved stars; these luminous stars are the most accessible tracers of the underlying stellar populations and can trace the entire SFH. Here we present a novel method based on long period variable (LPV) evolved asymptotic giant branch (AGB) stars and red supergiants (RSGs). We applied this method to reconstruct the SFH for IC1613, an irregular dwarf galaxy at a distance of 750 kpc. Our results provide an independent confirmation that no major episode of star formation occurred in IC1613 over the past 5 Gyr.


Sign in / Sign up

Export Citation Format

Share Document