gravitational instability
Recently Published Documents


TOTAL DOCUMENTS

694
(FIVE YEARS 98)

H-INDEX

54
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Ke-Rong He

Abstract The influence of the κ-deformed Kaniadakis distribution on Jeans instability in the background of f(R) gravity is investigated, the dispersion relation considering the κ-deformed Kaniadakis distribution is derived by exploiting the kinetic theory. The cases of high and low frequency perturbations are analyzed, respectively, it is found that the range of the unstable modes and the growth rates decrease with the increased distribution index κ in both of high and low frequency regime. Finally, based on the derivation of effective temperature, the relation between Jeans mass and temperature is studied, it is found that lower Jeans mass means that the system is more likely to collapse due to gravitational instability, the system is unstable for lower distribution index κ.


2022 ◽  
Vol 924 (1) ◽  
pp. 24
Author(s):  
Yutaka Fujita ◽  
Nozomu Kawakatu ◽  
Hiroshi Nagai

Abstract Massive molecular gas has been discovered in giant elliptical galaxies at the centers of galaxy clusters. To reveal its role in active galactic nucleus (AGN) feedback in those galaxies, we construct a semianalytical model of gas circulation. This model especially focuses on the massive molecular gas (interstellar cold gas on a scale of ∼10 kpc) and the circumnuclear disk (≲0.5 kpc). We consider the destruction of the interstellar cold gas by star formation and the gravitational instability for the circumnuclear disk. Our model can reproduce the basic properties of the interstellar cold gas and the circumnuclear disk, such as their masses. We also find that the circumnuclear disk tends to stay at the boundary between stable and unstable states. This works as an “adjusting valve” that regulates mass accretion toward the supermassive black hole. On the other hand, the interstellar cold gas serves as a “fuel tank” in the AGN feedback. Even if the cooling of the galactic hot gas is prevented, the interstellar cold gas can sustain the AGN activity for ≳0.5 Gyr. We also confirm that the small entropy of hot gas (≲30 keV cm2) or the short cooling time (≲1 Gyr) is a critical condition for the existence of massive amounts of molecular gas in the galaxy. The dissipation time of the interstellar cold gas may be related to the critical cooling time. The galaxy behavior is described by a simple relation among the disk stability, the cloud dissipation time, and the gas cooling rate.


2022 ◽  
Vol 924 (1) ◽  
pp. L15
Author(s):  
C. E. Fields

Abstract I report on the three-dimensional (3D) hydrodynamic evolution of a rapidly rotating 16 M ⊙ star to iron core collapse. For the first time, I follow the 3D evolution of the angular momentum (AM) distribution in the iron core and convective shell burning regions for the final 10 minutes up to and including gravitational instability and core collapse. In 3D, convective regions show efficient AM transport that leads to an AM profile that differs in shape and magnitude from MESA within a few shell convective turnover timescales. For different progenitor models, such as those with tightly coupled Si/O convective shells, efficient AM transport in 3D simulations could lead to a significantly different AM distribution in the stellar interior affecting estimates of the natal neutron star or black hole spin. The results suggest that 3D AM transport in convective and rotating shell burning regions are critical components in models of massive stars and could qualitatively alter the explosion outcome and inferred compact remnant properties.


Abstract The interaction between upper-ocean submesoscale fronts evolving with coherent features, such as vortex filaments and eddies, and finescale convective turbulence generated by surface cooling of varying magnitude is investigated. While convection is energized by gravitational instability, predominantly at the finescale (FS), which feeds off the potential energy that is input through cooling, the submesoscale (SMS) is energized at larger scales by the release of available potential energy stored in the front. Here, we decompose the flow into FS and SMS fields explicitly to investigate the energy pathways and the strong interaction between them. Overall, the SMS is energized due to surface cooling. The frontogenetic tendency at the submesoscale increases, which counters the enhanced horizontal diffusion by convection-induced turbulence. Downwelling/upwelling strengthens, and the peak SMS vertical buoyancy flux increases as surface cooling is increased. Furthermore, the production of FS energy by SMS velocity gradients is significant, up to half of the production by convection. Examination of potential vorticity reveals that surface cooling promotes higher levels of secondary symmetric instability, which coexists with the persistent baroclinic instability.


2021 ◽  
Vol 163 (1) ◽  
pp. 8
Author(s):  
Ruobing Dong ◽  
Joan R. Najita ◽  
Sean Brittain

2021 ◽  
Vol 922 (2) ◽  
pp. 207
Author(s):  
N. K. Bhadari ◽  
L. K. Dewangan ◽  
P. M. Zemlyanukha ◽  
D. K. Ojha ◽  
I. I. Zinchenko ◽  
...  

Abstract We report an observational study of the Galactic H ii region Sh 2-305/S305 using the [C ii] 158 μm line data, which are used to examine the gas dynamics and structure of photodissociation regions. The integrated [C ii] emission map at [39.4, 49.5] km s−1 spatially traces two shell-like structures (i.e., inner and outer neutral shells) having a total mass of ∼565 M ⊙. The inner neutral shell encompasses an O9.5V star at its center and has a compact ring-like appearance. However, the outer shell is seen with more extended and diffuse [C ii] emission, hosting an O8.5V star at its center, and surrounds the inner neutral shell. The velocity channel maps and position–velocity diagrams confirm the presence of a compact [C ii] shell embedded in the diffuse outer shell, and both the shells seem to expand with v exp ∼ 1.3 km s−1. The outer shell appears to be older than the inner shell, hinting that these shells are formed sequentially. The [C ii] profiles are examined toward S305, which are either double peaked or blue skewed and have the brighter redshifted component. The redshifted and blueshifted components spatially trace the inner and outer neutral shell geometry, respectively. The ionized, neutral, and molecular zones in S305 are seen adjacent to one another around the O-type stars. The regularly spaced dense molecular and dust clumps (mass ∼10–103 M ⊙) are investigated around the neutral shells, which might have originated as a result of gravitational instability in the shell of collected materials.


2021 ◽  
Vol 923 (1) ◽  
pp. 34
Author(s):  
Ryosuke T. Tominaga ◽  
Shu-ichiro Inutsuka ◽  
Hiroshi Kobayashi

Abstract We present a new instability driven by a combination of coagulation and radial drift of dust particles. We refer to this instability as “coagulation instability” and regard it as a promising mechanism to concentrate dust particles and assist planetesimal formation in the very early stages of disk evolution. Because of dust-density dependence of collisional coagulation efficiency, dust particles efficiently (inefficiently) grow in a region of positive (negative) dust density perturbations, leading to a small radial variation of dust sizes and as a result radial velocity perturbations. The resultant velocity perturbations lead to dust concentration and amplify dust density perturbations. This positive feedback makes a disk unstable. The growth timescale of coagulation instability is a few tens of orbital periods even when dust-to-gas mass ratio is on the order of 10−3. In a protoplanetary disk, radial drift and coagulation of dust particles tend to result in dust depletion. The present instability locally concentrates dust particles even in such a dust-depleted region. The resulting concentration provides preferable sites for dust–gas instabilities to develop, which leads to further concentration. Dust diffusion and aerodynamical feedback tend to stabilize short-wavelength modes, but do not completely suppress the growth of coagulation instability. Therefore, coagulation instability is expected to play an important role in setting up the next stage for other instabilities, such as streaming instability or secular gravitational instability, to further develop toward planetesimal formation.


2021 ◽  
Vol 923 (1) ◽  
pp. 93
Author(s):  
Alan P. Boss

Abstract While collisional accumulation is nearly universally accepted as the formation mechanism of rock and ice worlds, the situation regarding gas giant planet formation is more nuanced. Gas accretion by solid cores formed by collisional accumulation is the generally favored mechanism, but observations increasingly suggest that gas disk gravitational instability might explain the formation of at least the massive or wide-orbit gas giant exoplanets. This paper continues a series aimed at refining three-dimensional (3D) hydrodynamical models of disk instabilities, where the handling of the gas thermodynamics is a crucial factor. Boss (2017, 2021) used the β cooling approximation to calculate 3D models of disks with initial masses of 0.091 M ⊙ extending from 4 to 20 au around 1 M ⊙ protostars. Here we employ 3D flux-limited diffusion (FLD) approximation models of the same disks, in order to provide a superior treatment of disk gas thermodynamics. The new models have quadrupled spatial resolution compared to previous 3D FLD models, in both the radial and azimuthal spherical coordinates, resulting in the highest spatial resolution 3D FLD models to date. The new models continue to support the hypothesis that such disks can form self-gravitating, dense clumps capable of contracting to form gas giant protoplanets, and suggest that the FLD models yield similar numbers of clumps as β cooling models with β ∼ 1 to ∼10, including the critical value of β = 3 for fragmentation proposed by Gammie.


2021 ◽  
Author(s):  
Zhilin Ye ◽  
Dawei Fan ◽  
Bo Li ◽  
Qizhe Tang ◽  
Jingui Xu ◽  
...  

Abstract. Tibet, which is characterized by collisional orogens, has undergone the process of delamination or convective removal. The lower crust and mantle lithosphere appear to have been removed through delamination during orogenic development. Numerical and analog experiments demonstrate that the metamorphic eclogitized oceanic subduction slab or lower crust may promote gravitational instability due to its increased density. The eclogitized oceanic subduction slab or crustal root is believed to be denser than the underlying mantle and tends to sink. However, the density of eclogite under high-pressure and high-temperature conditions and density differences from the surrounding mantle is not preciously constrained. Here, we offer new insights into the derivation of eclogite density with a single experiment to constrain delamination in Tibet. Using in situ synchrotron X-ray diffraction combined with diamond anvil cell, experiments focused on minerals (garnet, omphacite, and epidote) of eclogite are conducted under simultaneous high-pressure and high-temperature conditions, which avoids systematic errors. Fitting the pressure-temperature-volume data with the third-order Birch-Murnaghan equation of state, the thermal equation of state (EoS) parameters, including the bulk modulus (KT0), its pressure derivative (KT0′), the temperature derivative ((KT/T)P), and the thermal expansion coefficient (α0), are derived. The densities of rock-forming minerals and eclogite are modeled along with the geotherms of two types of delamination. The delamination processes of subduction slab breakoff and the removal of the eclogitized lower crust in Tibet are discussed. The Tibetan eclogite which containing 40–60 vol. % garnet and 37–64 % degrees of eclogitization can promote the delamination of slab break-off in Tibet. Our results indicate that eclogite is a major controlling factor in the initiation of delamination. A high abundance of garnet, a high Fe-content, and a high degree of eclogitization are more conducive to instigating the delamination.


Sign in / Sign up

Export Citation Format

Share Document