stellar populations
Recently Published Documents





2022 ◽  
Vol 510 (2) ◽  
pp. 2746-2752
Stefano Zibetti ◽  
Anna R Gallazzi ◽  
Y Ascasibar ◽  
S Charlot ◽  
L Galbany ◽  

2022 ◽  
Vol 924 (2) ◽  
pp. 70
Brenna Mockler ◽  
Angela A. Twum ◽  
Katie Auchettl ◽  
Sierra Dodd ◽  
K. D. French ◽  

Abstract Tidal disruption events (TDEs) provide a unique opportunity to probe the stellar populations around supermassive black holes (SMBHs). By combining light-curve modeling with spectral line information and knowledge about the stellar populations in the host galaxies, we are able to constrain the properties of the disrupted star for three TDEs. The TDEs in our sample have UV spectra, and measurements of the UV N iii to C iii line ratios enabled estimates of the nitrogen-to-carbon abundance ratios for these events. We show that the measured nitrogen line widths are consistent with originating from the disrupted stellar material dispersed by the central SMBH. We find that these nitrogen-to-carbon abundance ratios necessitate the disruption of moderately massive stars (≳1–2 M ⊙). We determine that these moderately massive disruptions are overrepresented by a factor of ≳102 when compared to the overall stellar population of the post-starburst galaxy hosts. This implies that SMBHs are preferentially disrupting higher mass stars, possibly due to ongoing top-heavy star formation in nuclear star clusters or to dynamical mechanisms that preferentially transport higher mass stars to their tidal radii.

2021 ◽  
Vol 258 (1) ◽  
pp. 9
Li-Li Wang ◽  
Shi-Yin Shen ◽  
A-Li Luo ◽  
Guang-Jun Yang ◽  
Ning Gai ◽  

Abstract We first derive the stellar population properties: age and metallicity for ∼43,000 low redshift galaxies in the DR7 of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey, which have no spectroscopic observations in the Sloan Digital Sky Survey (SDSS). We employ a fitting procedure based on the small-scale features of galaxy spectra so as to avoid possible biases from the uncertain flux calibration of the LAMOST spectroscopy. We show that our algorithm can successfully recover the average age and metallicity of the stellar populations of galaxies down to signal-to-noise ratio ≥5 through testing on both mock galaxies and real galaxies comprising LAMOST and their SDSS counterparts. We provide a catalog of the age and metallicity for ∼43,000 LAMOST galaxies online. As a demonstration of the scientific application of this catalog, we present the Holmberg effect on both age and metallicity of a sample of galaxies in galaxy pairs.

2021 ◽  
Vol 163 (1) ◽  
pp. 24
K. L. Luhman

Abstract I have used high-precision photometry and astrometry from the early installment of the third data release of Gaia (EDR3) to perform a survey for members of the stellar populations within the Sco-Cen complex, which consist of Upper Sco, UCL/LCC, the V1062 Sco group, Ophiuchus, and Lupus. Among Gaia sources with σ π < 1 mas, I have identified 10,509 candidate members of those populations. I have compiled previous measurements of spectral types, Li equivalent widths, and radial velocities for the candidates, which are available for 3169, 1420, and 1740 objects, respectively. In a subset of candidates selected to minimize field star contamination, I estimate that the contamination is ≲1% and the completeness is ∼90% at spectral types of ≲M6–M7 for the populations with low extinction (Upper Sco, V1062 Sco, UCL/LCC). I have used that cleaner sample to characterize the stellar populations in Sco-Cen in terms of their initial mass functions, ages, and space velocities. For instance, all of the populations in Sco-Cen have histograms of spectral types that peak near M4–M5, which indicates that they share similar characteristic masses for their initial mass functions (∼0.15–0.2 M ⊙). After accounting for incompleteness, I estimate that the Sco-Cen complex contains nearly 10,000 members with masses above ∼0.01 M ⊙. Finally, I also present new estimates for the intrinsic colors of young stars and brown dwarfs (≲20 Myr) in bands from Gaia EDR3, the Two Micron All Sky Survey, the Wide-field Infrared Survey Explorer, and the Spitzer Space Telescope.

2021 ◽  
pp. 1-2
Leticia Carigi

2021 ◽  
Vol 923 (1) ◽  
pp. 65
A. Feldmeier-Krause ◽  
I. Lonoce ◽  
W. L. Freedman

Abstract The evolution of galaxies is imprinted on their stellar populations. Several stellar population properties in massive early-type galaxies have been shown to correlate with intrinsic galaxy properties such as the galaxy’s central velocity dispersion, suggesting that stars formed in an initial collapse of gas (z ∼ 2). However, stellar populations change as a function of galaxy radius, and it is not clear how local gradients of individual galaxies are influenced by global galaxy properties and galaxy environment. In this paper, we study the stellar populations of eight early-type galaxies as a function of radius. We use optical spectroscopy (∼4000–8600 Å) and full spectral fitting to measure stellar population age, metallicity, slope of the initial mass function (IMF), and nine elemental abundances (O, Mg, Si, Ca, Ti, C, N, Na, and Fe) out to 1 R e for each galaxy individually. We find a wide range of properties, with ages ranging from 3–13 Gyr. Some galaxies have a radially constant, Salpeter-like IMF, and other galaxies have a super-Salpeter IMF in the center, decreasing to a sub-Salpeter IMF at ∼0.5 R e . We find a global correlation of the central [Z/H] with the central IMF and the radial gradient of the IMF for the eight galaxies, but local correlations of the IMF slope with other stellar population parameters hold only for subsets of the galaxies in our sample. Some elemental abundances also correlate locally with each other within a galaxy, suggesting a common production channel. These local correlations appear only in subsets of our galaxies, indicating variations of the stellar content among different galaxies.

2021 ◽  
Vol 21 (11) ◽  
pp. 272
Feng Luo ◽  
Yong-Heng Zhao ◽  
Jiao Li ◽  
Yan-Jun Guo ◽  
Chao Liu

Abstract Binary stars play an important role in the evolution of stellar populations . The intrinsic binary fraction (f bin) of O and B-type (OB) stars in LAMOST DR5 was investigated in this work. We employed a cross-correlation approach to estimate relative radial velocities for each of the stellar spectra. The algorithm described by Sana et al. (2013) was implemented and several simulations were made to assess the performance of the approach. The binary fraction of the OB stars is estimated through comparing the uni-distribution between observations and simulations with the Kolmogorov-Smirnov tests. Simulations show that it is reliable for stars most of whom have six, seven and eight repeated observations. The uncertainty of orbital parameters of binarity becomes larger when observational frequencies decrease. By adopting the fixed power exponents of π = −0.45 and κ = −1 for period and mass ratio distributions, respectively, we obtain that f bin = 0.4 − 0.06 + 0.05 for the samples with more than three observations. When we consider the full samples with at least two observations, the binary fraction turns out to be 0.37 − 0.03 + 0.03 . These two results are consistent with each other in 1σ.

2021 ◽  
Vol 923 (1) ◽  
pp. 12
Sadman S. Ali ◽  
Roberto De Propris ◽  
Chul Chung ◽  
Steven Phillipps ◽  
Malcolm N. Bremer

Abstract We measure the near-UV (rest-frame ∼2400 Å) to optical color for early-type galaxies in 12 clusters at 0.3 < z < 1.0. We show that this is a suitable proxy for the more common far-ultraviolet bandpass used to measure the ultraviolet upturn and find that the upturn is detected to z = 0.6 in these data, in agreement with previous work. We find evidence that the strength of the upturn starts to wane beyond this redshift and largely disappears at z = 1. Our data are most consistent with models where early-type galaxies contain minority stellar populations with non-cosmological helium abundances, up to around 46%, formed at z ≥ 3, resembling globular clusters with multiple stellar populations in our Galaxy. This suggests that elliptical galaxies and globular clusters share similar chemical evolution and star formation histories. The vast majority of the stellar mass in these galaxies also must have been in place at z > 3.

Sign in / Sign up

Export Citation Format

Share Document